About These Tutorials
Setting Up Your Development EnvironmentXML-Aware and DITA-Aware Editing EnvironmentConfiguring OxygenXML For DITA DevelopmentSetting Up Eclipse to Work With the Open ToolkitSetting Up OxygenXML for DITA Editing
Chapter 1. Understanding Configuration and SpecializationXML Vocabularies and their ManagementDITA Vocabulary Management: ModulesDITA Document Types, Configuration, and SpecializationConfigurationSpecializationThe Cost of Interchange Enablement and the Overall Value of DITA
Chapter 2. Introduction to the Configuration and Extension TutorialsGeneral Guidance for Developing New Shells and ModulesDTD or XSD?Schema-Aware Parsing and SaxonPackaging Document Type Shells and Vocabulary Modules as Toolkit PluginsDeploying Toolkit PluginsPublic Identifiers
Chapter 3. Document Type Shell TutorialDTD Topic Type Shell Creation TutorialDTD Topic Type Shell Tutorial Step 1: Copy Existing ShellDTD Topic Type Shell Tutorial Step 2: Delete Unwanted Domain ModulesDTD Topic Type Shell Tutorial Step 3: Add Reference to a New DomainXSD Topic Type Shell TutorialXSD Topic Type Shell Tutorial Step 1: Copy Existing ShellXSD Topic Type Shell Tutorial Step 2: Remove References to Unwanted Domain ModulesXSD Topic Type Shell Tutorial Step 3: Add Reference to a New Domain
Chapter 4. Topic Constraint Module TutorialTopic Constraint Module Step 1: Create The Constraint Module FileTopic Constraint Module Step 2: Declare The domains Attribute Text EntityTopic Constraint Module Step 3: Define the New Content ModelsTopic Constraint Module Step 4: Integrate the Constraint Module in a Document Type ShellTopic Constraint Module Step 5: Test the Document Type ShellTopic Constraint Module: XSD-Syntax Version
Chapter 5. Attribute Specialization TutorialAttribute Specialization Step 1: Create Domain Module FilesAttribute Specialization Step 2: Integrate With Document Type ShellAttribute Specialization Step 3: Test the DeclarationsAttribute Specialization: XSD Version
Chapter 6. Element Domain Specialization TutorialElement Domain Specialization Process Overview (DTDs)Element Domain Specialization Step 1: Design The Domain Element TypesElement Domain Specialization Step 2: Declare The Domain Element TypesStep 2-1. Create New .mod FileStep 2-2. Declare Element Type Name Parameter EntitiesStep 2-3. Declare Elements and AttributesStep 2-4. Declare class AttributesElement Domain Specialization Step 3: Declare The Module Entities FileStep 3-1. Create xmlDomain.entStep 3-2. Declare Type-Specific Integration EntitiesStep 3-3. Declare Domain Usage Text EntityElement Domain Specialization Step 4: Integrate The Module Into a Document Type ShellStep 4-1. Setup Local Copy of Document Type Shell DTDStep 4-2. Create a Test TopicStep 4-3. Add .ent File to ShellStep 4-4. Update Type-Specific Parameter Entities in Shell DTDStep 4-5. Update domains attribute with new domainStep 4-6. Include .mod Declaration SetStep 4-7. Test the integrationElement Domain Specialization Step 5: Extend DITA Open Toolkit XHTML ProcessorElement Domain Specialization Step 5-1: Create Blank Specialization-Specific XSLT Transform PluginElement Domain Specialization Step 5-2: Implement Type-Specific XSLT TemplatesElement Domain Specialization Step 5-3: Test The StylesheetElement Domain Specialization: XSD Version
Chapter 7. Topic Specialization TutorialTopic Specialization Process OverviewTopic Specialization Step 1: Design The Topic Element TypesTopic Specialization Step 2: Declare the Topic Module Element TypesStep 2-1. Create Test Case Document InstanceStep 2-2. Create New Document Type Shell DTDStep 2-3. Create New .mod File and Integrate Into ShellStep 2-4. Declare FAQ Question Topic Type Elements and AttributesStep 2-5. Declare Element Type Parameter EntitiesStep 2-6. Declare FAQ Question class AttributesStep 2.7: Define domains Attribute Contribution Entity (.ent File)Topic Specialization Step 3. Package the Modules as a Toolkit PluginTopic Specialization Step 4: Extending the Toolkit To Support the SpecializationTopic Specialization Step 4-1: Create Initial Toolkit Plugin ComponentsTopic Specialization Step 4-2: Create Templates For Specialized ElementsTopic Specialization Step 4-3: Copy Template Contents from Base XSLTsTopic Specialization Step 4-4: Implement Specialization-Specific XSLT ProcessingTopic Specialization Step 4-5: Refine Markup Design for FAQ QuestionTopic Specialization Step 4-4 (continued): Implement Specialization-Specific XSLT ProcessingTopic Specialization Step 4-6: Implement CSS StylesTopic Specialization: XSD Version
Chapter 8. Map Specialization TutorialMap Specialization Step 1: Design the Map Element TypesMap Specialization Step 2: Create New Document Type Shell DTDMap Specialization Step 3: Create faq-map Map Type ModuleMap Specialization Step 4: Create faq-mapDomain ModuleMap Specialization: XSD VersionMap Specialization XSD Step 1: Define faq-map Map TypeMap Specialization XSD Step 2: Define faq-mapDomain Map Domain
This information set provides a set of tutorials on DITA 1.2 configuration and extension. These tutorials replace the DITA 1.1 "Specialization Tutorials" originally published in 2007.
These tutorials are excerpted from the upcoming book DITA for Practitioners, to be published by XML Press in 2011.
While these tutorials are taken from the copyrighted book, you are free to use these tutorials however you would like, including creating derivative works, as long as an appropriate attribution crediting the author, W. Eliot Kimber, and the original source, DITA for Practitioners, is included. That is, this notice serves as blanket written permission to quote from or use in their entirety these tutorials in other works. I do, however, ask that you inform me in advance of any significant use just so that I'm aware of it.
You can find the working results of all the tutorials at http://www.xiruss.org/tutorials/materials/dita-tutorial-materials.zip.
The tutorials assume you have a copy of the DITA Open Toolkit and an XML-aware editing environment of some sort. I generally recommend OxygenXML as a high-value XML and DITA development environment but you can of course use any comparable tool set.
The tutorials are arranged in order from least-involved to most-involved. If all you need to do is create a local document type shell, you can jump right to Document Type Shell Tutorial.
<p>
to just character data and a few inline element types. <topic>
element type that supports the creation of FAQ (frequently asked question) topics. These tutorials are authored as a set of DITA 1.2-conforming maps and topics using topic types from the DITA for Publishers project as configured for use in the DITA for Practitioners book from which these tutorials are drawn. I use OxygenXML as my day-to-day authoring environment. The HTML, PDF, and EPUB versions were produced using the DITA Open Toolkit. The EPUB plugin is currently available through the DITA for Publishers project.
Please report any comments, bug reports, or technical inaccuracies to me at drmacro@yahoo.com. Please include "DITA Tutorial" in the subject line so I know it's probably not spam. I'm also happy to discuss any aspect of the tutorial on the DITA users Yahoo! group, dita-users@groups.yahoo.com.
There are many ways to set up a productive DITA development environment. This chapter describes a set of tools that work well for the author and that the various tutorials and how-to sections are defined in terms of.
At the time of writing I use the OxygenXML editor as my primary XML development environment and heads-down authoring tool. As of the time of writing, OxygenXML provides unmatched support for DITA 1.2 features. It integrates with the DITA Open Toolkit and is as easy to configure for new DITA vocabulary modules as it is possible for a DITA-aware tool to be. For those reasons I strongly recommend OxygenXML as an XML and DITA development environment. While OxygenXML is a commercial product and is not free, it offers a tremendous value in terms of the features provided. OxygenXML is provided as a standalone tool and as an Eclipse plugin. The two versions of OxygenXML are functionally equivalent and the same license will work for either. I personally use the standalone version of OxygenXML for largely historical reasons and also to avoid having to close down my OxygenXML session when I have to close Eclipse, which is fairly often due to the type of development I typically do.
You can also use Eclipse alone for DITA-aware XML development using Eclipse's various XML-related support components and available plugins. Eclipse can be integrated with the Open Toolkit so that you can run the Toolkit from within Eclipse (see Setting Up Eclipse to Work With the Open Toolkit).
Other XML development environments, such as XML Spy, can of course be used to develop DITA-related components but they do not, at the time of writing, offer the same degree of built-in DITA support or integration with the Open Toolkit as provided by OxygenXML.
To make OxygenXML ready for DITA development you need only do one thing after installing the product: Turn on use of external DTDs for determination of document type association. You also have a choice in how you use OxygenXML in relation to the DITA Open Toolkit.
OxygenXML has a general feature by which it can determine the document type associated with a given document, and thereby determine the set of features to use for that document. OxygenXML has built-in DITA-specific features and it will turn those on for any document that it recognizes as being a DITA document, regardless of the specific vocabulary the document uses. It does this by looking for the @ditaarch:DITAArchVersion
attribute, which all conforming DITA documents must have and which serves to unambiguously identify a document as being a DITA document.
However, most DITA documents do not literally specify the @ditaarch:DITAArchVersion
attribute because it is defaulted in the DTDs and schemas. Thus, in order to recognize a document as a DITA document the document must be parsed with respect to its DTD or schema.
OxygenXML can do this but it does not do it by default, because there is a performance cost in parsing documents in order to then determine what general type of docuemnt they are. So you must turn this feature on in order for Oxygen to automatically process your specialized DITA documents, or even documents that use local document type shells, as DITA document.
To turn this feature on go to Preferences->Document Type Association to bring up the Document Type Association panel. On that panel make sure that the "Enable DTD/XML Schema processing in document type detection" check box is checked and that the "Only for local DTDs/XML schemas" checkbox is checked. Save the new preference settings.
Once you have made this change, OxygenXML will automatically apply to DITA-specific editor features to all DITA documents regardless of specialization.
OxygenXML includes a copy of the Open Toolkit, usually the latest released version current at the time the OxygenXML version is released. The OxygenXML-provided Toolkit includes some small patches to the Toolkit that improve it's interaction with OxygenXML but that are not essential for use of the Toolkit with Oxygen.
OxygenXML uses, or can use, the master entity resolution catalog that is maintained by the Open Toolkit to resolve DITA DTDs and schemas. If you deploy your local shells and specialized vocabulary modules to Oxygen's built-in Toolkit then your DITA documents that use those shells and modules will just work with no additional configuration actions required. Because OxygenXML is fully specialization aware it provides all its out-of-the-box DITA features to all DITA documents once it is able to parse them, which it can do if the DTDs and schemas are resolvable.
OxygenXML's built-in Open Toolkit is in frameworks/dita/DITA-OT
below the OxygenXML installation directory.
To ensure that the master Toolkit catalog is being used, go to Preferences->Document Type Association to bring up the Document Type Association panel. Select the entry for "DITA" and select the "Edit" button to edit the document type association. Select the "Catalogs" tab to see the list of associated catalogs. You should see an entry for "${frameworks}/dita/catalog.xml". The string "${frameworks}" is a reference to the OxygenXML-defined variable that resolves to the location of the OxygenXML frameworks
directory. If you want Oxygen to use a Toolkit installed at a different location on your computer you can change this setting to reflect the location of that Toolkit.
I use option (2) most of the time because I find it easiest and most reliable to have my Toolkit be in an invariant location and use Ant scripts or manual moving and copying to configure that Toolkit instance with whatever I need at the moment. This reflects in part the fact that my daily job involves working with many different Toolkit configurations and versions for specific clients. I find it easier to have a consistent process and supporting scripts (Ant scripts in my case) that swap into the that one location the Toolkit versions and plugins I need for a specific project. It allows me to have exactly one Toolkit location that all my Toolkit-related activities use, removing the chance of accidentally doing things in the wrong location.
If you are working with just one Toolkit version or configuration most or all of the time but you can't use the OxygenXML-provided version for whatever reason (for example, you need to use an older version or newer version of the Toolkit) then option (3) is probably the best practice since you only have to configure the DITA document type association and each transformation scenario once to reflect the Toolkit location. It does mean that you have to remember to change the default value for the dita.dir parameter whenever you create a new DITA transformation scenario.
Eclipse is a general development environment that offers many handy features for doing DITA development, including the ability to develop and run Ant scripts. Eclipse includes both an Ant editor for editing Ant scripts and an Ant "view" that makes it easy to run different Ant scripts.
I use Ant scripts from Eclipse mostly for development related activities, such as scripts to manage source code compilation, packaging, and deployment of project components to my local working environment. For example, for all my DITA-related projects I have a standard Ant target that deploys that project's Toolkit plugins to my local Toolkit instance (which is normally the Toolkit that Oxygen uses).
Setting up Eclipse so it can run the Open Toolkit's Ant scripts you can also use Eclipse to run Ant scripts that run the Toolkit. For example, you can create Ant scripts that will run multiple Toolkit transformations on a given input DITA map or process a whole set of documents and then do something with the generated results, such as publish them to a Web site.
To set this up you must add the Toolkit's custom Java JAR files to the list of Jar files that Ant uses when it is run by Eclipse. This does essentially the same thing that the Toolkit's startup.sh and startup.bat scripts do, namely set up the appropriate Java class path so the custom Toolkit Ant processing will work.
You must also configure an ant property that specifies the location of the Open Toolkit on your machine. By convention I call this property dita-ot-dir and that's the name used in all the samples in this book. While you can hard-code this property in the various Ant scripts you use, it's much better to set up your Ant scripts to get the property from a separate configuration file so that you can change it one place. This also makes it easier to do collaborative development of DITA projects where each developer needs to have a different value for the Toolkit location but the scripts are managed in a common code repository.
build.properties
or .build.properties
your home directory. If you are on a Unix or Linux system, using .build.properties
offers more security because the file will be hidden by default, making it safer to hold sensitive values like passwords. build.properties
file and add a line like this:Where the value to the right of the "=" is the actual location of the Open Toolkit you want to use on your machine.
These three property file inclusions will look for build.properties
in the same directory as the Ant script itself, .build.properties
in your home directory, and build.properties
in your home directory, in that order. Whichever of these files has the first definition of a given property will set the value of that property. This organization allows you to have global defaults for properties in your user-specific properties file and override those defaults in a project-specific properties file.
lib
directory underneath the Toolkit installation you want to use (e.g., the Toolkit installed with OxygenXML). saxon
directory under the lib
directory. saxon
directory and add those to the list under "Global Entries". You may also need to add the two jars "xercesImpl.jar" and "xml-apis.jar", which are part of the Apache Xerces2 Java project. If you don't already have them on your system somewhere, you can download them from http://xerces.apache.org and put them in the lib
directory of your Toolkit installation.
With this Ant configuration in place you should be able to run Ant scripts that use the Open Toolkit from within Eclipse.
To run this script yourself you will need to either create a build.properties
file that sets the value of the dita-ot-dir Ant property or change the value in the script itself. (The first definition of a property is the effective value in Ant, so a value for dita-ot-dir set in one of the included build.properties
file would take precedence over the value specified in the Ant script itself.
If you want to be able to run this type of Ant script from the command line outside of Eclipse you must either do so from a command window created using the Toolkit-provided startup.sh
or startup.cmd
script or you must configure Ant's classpath using normal Ant configuration facilities. For this type of configuration there are many possible approaches, all of which are beyond the scope of this book.
OxygenXML can automatically detect that a document is a DITA document as long as you have turned on Oxygen's ability to look inside DTDs and schemas to determine document type association. This setting is not turned on by default through Oxygen version 11.
With DTD processing turned on for document type detection, Oxygen will recognize any DITA document as a DITA document regardless of what document type shell it uses as long as the @dita:DITAArchVersion
attribute is present. This will cause Oxygen to turn on it's built-in DITA-specific editing features, allowing you to edit any DITA map or topic document with full features.
Before you can design and implement your own configurations and specializations you must have a basic understanding of what configuration and specialization are and do.
DITA is designed specifically to allow the definition of new markup and new document types in a way that preserves the ability for any general-purpose DITA processor to usefully process documents that use the new markup. This in turn enables blind interchange of DITA documents, because any DITA user knows that they can use and process, at least minimally, any other conforming DITA documents they get from any source. In particular, in the context of a map, you can combine together topics of any type and know that you can get useable, if not optimal, results from any general-purpose DITA processor.1
This feature of DITA, the specialization feature, the ability to have your own markup design while still ensuring blind interchange of your content with other DITA users, is unique among all currently-existing standard XML applications (and most, if not all, private XML applications).
Specialization is the one truly unique and distinguishing aspect of DITA. No other aspect of DITA is exclusive to DITA. All of DITA's modularity features—maps, topics, key-based addressing, etc.—can either be found to one degree or another in other XML applications or could be added to those applications without too much trouble. This is not to discount the value of these features of DITA—they represent very deep thought and years of practical experience and are quite valuable in themselves, but they are not distinguishing in the way that specialization is.
Even if you have no use for any aspect of DITA having to do with modularity or reuse you still have a use for specialization simply because it enables reliable interchange in a way that no other XML application does. Even if your only interchange partner is your future self, DITA still offers dramatic and compelling advantages.
In short, one can see DITA as an architecture for the management of XML vocabularies.
These tutorials show you how to apply the architecture to specific types of requirements.
In general XML parlance a "vocabulary" is a set of element types and attributes designed to be used together for some purpose. A given vocabulary may be "encompassing", meaning that it is intended to be used as the main or only vocabulary for a given document, or "enabling", meaning it is intended to be integrated into and used with encompassing vocabularies.
Examples of encompassing vocabularies are DocBook, XHTML, and NLM. Examples of enabling vocabularies are MathML and Dublin Core metadata.
A challenge historically with managing XML (and SGML) vocabularies is that, while it's easy to define enabling vocabularies like MathML and possible to define "extensible" encompassing vocabularies like DocBook, there was no standard-defined mechanism for managing how encompassing and enabling vocabularies are combined or extended in a way that ensured understandability and interchange.1
In particular, before DITA, all mechanisms for combining or extending vocabularies were entirely syntactic—they provided no way to examine a document and know how that document's vocabulary (it's document type) related to any known vocabulary so that you could know, for sure, whether your processing environment could handle it or if you could share content from that document with your documents.
For example, DocBook provides for extension by providing the syntactic hooks needed to allow local modification to content models (e.g., parameter entities in DTDs). This allows you to define your own element types and use them in a nominally "DocBook" document. However, having defined your new tags, there's nothing in the markup that tells a processor or an observer how your new element type relates to any known element types (that is, to the element types defined in the DocBook standard or defined in any other DocBook-based document type). Thus, there's no reliable way for a general-purpose DocBook processor to know what to do with your document. Thus, to say that your document is "DocBook" is not accurate or useful. Rather, at best your document is "DocBook based". But knowing that doesn't tell you anything particularly useful. In particular, it doesn't tell you what you'd need to know in order to process it reliably (because you have no way to know what to do with the non-DocBook-defined elements in the document without actually talking to the developer of the custom markup).
By the same token, there are no DocBook-defined constraints on how you can extend DocBook so there's no way to predict what sort of changes a given "DocBook" document might reflect so that, for example, a general-purpose DocBook processor could provide useful fallback processing or so that a human observer can understand the nature of the extensions even if they don't understand the details of the new markup (for which they would need some form of documentation).
That is, using only the syntactic tools provided by DTDs or XSD schemas (or any other available form of XML document constraint, such as RelaxNG) extension and customization of XML vocabularies is inherently unmanageable because there is no machine-processable mechanism for communicating or understanding the relationship between any two vocabularies.
If customization is not manageable then the only way to ensure interchange is to disallow customization. This was the approach taken by "interchange" document types, such as ATA 2100. But of course invariant vocabularies suffer a number of serious and fatal problems. They tend to become very large because they must reflect a union of the requirements of all current and expected interchange partners. They tend to not satisfy key requirements of individual interchange partners because you can never put everything in or because local requirements are at odds with interchange requirements (for example, markup that is specific to a given company's internal business processes, which might be trade secrets). I think it's fair to say that, as an industry, we've conclusively proved over the last 20 years or so that monolithic interchange document types do not work.
DITA addresses this lack of manageability by providing features that make vocabularies manageable while avoiding the inherent problems of monolithic interchange document types.
DITA essentially turns the problem on its head. Rather than having invariant monolithic document types, it provides invariant vocabulary "modules" that can be combined together to form an infinite variety of specific document types and that can themselves be extended, in a controlled fashion, to create new vocabulary modules.
Likewise, vocabulary modules can be locally configured through "constraint" modules, which enable the customization of content models and attribute lists but only in ways that guarantee interchangeability and processability.
DITA defines a markup-based declaration mechanism that makes the nature of any configuration or extension machine-understandable. That is, a processor, looking at any conforming DITA document, can know exactly what vocabulary modules it uses and, if constraints have been applied, what those constraints are. For any given DITA element, a processor can know what standard-defined DITA elements it is based on, and thus how to apply at least some minimal DITA-defined processing to those elements.
These declaration mechanisms are the @class
and @domains
attributes. These attributes are the "magic" of DITA that make everything work. These attributes, along with some essential rules for vocabulary composition, make it possible for any general-purpose DITA processor to reliably process any DITA document no matter how it has been configured or extended. Likewise, a human observer of the document can know how its markup relates to other DITA markup and can look at any given DITA vocabulary module and know how it relates to other modules.
Thus you can think of DITA as an unbounded set of vocabulary modules and a set of tools for combining those modules into specific document types suited to specific requirements.
In DITA a "DITA document type" is nothing more or less than a unique set of vocabulary and constraint modules used together in a document. For example, a <concept>
document that uses the highlight and indexing domain modules (and no others) reflects the DITA document type consisting of the concept topic type module and the highlight and indexing domain modules. This combination can be expressed by the string "topic concept hi-d indexing-d", read as "the concept topic type, which extends the topic topic type, integrated with the highlight and indexing domains".
This simple list of module names tells you everything you need to know in order to know what the processing requirements for the document are and whether or not elements from another DITA document are or are not consistent with the elements in this document.
@domains
attribute. e.g.:Note that you don't need the actual DTD or XSD declarations for the modules, you only need to know the module names.
One implication of this is that DITA documents do not need to have literal DOCTYPE declarations or XSD schema associations as long as they specify the set of vocabulary modules they use. Likewise, when a document does have a DOCTYPE or schema assocation, it doesn't matter what DTD file or XSD document it uses as long as that DTD or XSD accurately reflects the set of modules the document declares it uses.
This means that DITA processors should never depend on the use of a specific DTD or XSD file because the use of a specific file means nothing. Two DTD or XSD document type shells that reflect the same set of modules define identical DITA document types. This is a fundamental difference between DITA and traditional XML and SGML applications, where the only thing you could know for sure was the specific DTD or XSD file a document used.
For this reason, any system that claims to be a general DITA-aware processor that also requires or expects the use of specific DTD or XSD files is fundamentally broken because it demonstrates a lack of understanding of how DITA document types work.
(But do keep in mind that the DITA way of viewing document types is so different from traditional XML practice that it's no surprise that tools and many practitioners would get it wrong, especially tools that reflect an SGML heritage, where the DTD was everything. Unfortunately, some of these tools reflect unfortunate architectural decisions made decades ago that are difficult or impossible to undo in order to fully support DITA's way of thinking about document types. That doesn't mean those tools are not useful or even compelling, just that they will be harder to adapt to locally-defined document types and non-standard-defined vocabulary modules.)
In this module-based approach to vocabulary management there are two things you can do to create DITA document types: configuration and specialization.
The DITA standard defines specific structural, naming, and coding requirements for document type shells and modules that help ensure consistency of design and implementation and make it easy to combine modules into new document types. While these patterns are not strictly needed technically (they have no bearing on the syntactic validity or processability of DITA documents), they make it easier to use and re-use modules and generally keep things consistent. Once you understand the patterns and how the pieces fit together, you will see that creating new specializations and configurations is remarkably easy.
DITA is about interchange and that includes interchange of knowledge and interchange of implementation components, as well as interchange of content. DITA's modular vocabulary approach is designed in part to make the interchange of vocabulary as reliable as the interchange of content. A large part of this is simply standardizing implementation details so that having learned how DITA vocabulary implementation works you should be able to quickly apply that knowledge to any conforming DITA vocabulary, no matter how specialized.
Configuration is the task of taking existing vocabulary and constraint modules and combining them together to define a specific DITA document type.
You do configuration by creating new document type shells, that is, DTD or XSD files that serve essentially as a manifests of the vocabulary modules that make up the DITA document types.
Configuration can also involve the creation of new constraint modules.
As an implementation activity, the creation of new document type shells is an entirely mechanical process that anyone can perform even if they have no knowledge of DTD or XSD syntax. These tutorials demonstrate the mechanical process. Likewise, because the process is entirely mechanical (meaning it requires no creative thought or invention), it can be automated, as it has been by Jarno Elovirta and his DITA DTD Generator (http://dita-generator.appspot.com/).
The development of constraint modules requires a bit more DTD or XSD knowledge, but it is also a largely mechanical process because it is always about removing or constraining existing things, not adding new things, so it does not require invention, only analysis of requirements and modification of existing declarations.
Specialization is the process of creating new structural or domain vocabulary modules that provide new markup for specific requirements.
The essential aspect of specialization is that every element type or attribute defined in a vocabulary module must be based on and consistent with an element type or attribute defined in a more-general vocabulary module or in the base topic or map type.
This requirement ensures that any element, no matter how specialized, can always be mapped back to some known type and therefore understood and processed in terms of that known type. This ensures that all DITA documents, no matter how specialized, can always be processed in some way. That is, new markup should never break existing specialization-aware DITA processing.
Every element type exists in a specialization hierarchy, which goes from the base module (topic or map) through any intermediate modules to the element itself.
For example, if you defined a specialization of <concept>
called <myConcept>
it's specialization hierarchy would be <topic>
-> <concept>
-> <myConcept>
. A processor given a <myConcept>
document would be able to process it either as a concept topic or as a generic topic, as appropriate.
The magic of specialization is the @class
attribute.
@class
attribute. The value of the class attribute is the specification of the specialization hierarchy for the element. The syntax of the @class
attribute is: <myConcept>
topic type the @class
value would be The
<myConcept>
element in the "myConcept" module, which specializes<concept>
from the "concept" module, which in turn specializes<topic>
from the "topic" module.
<myConcept>
topic type defined a specialized body element, say <myConceptBody>
, then it's @class
value would be:<myConcept>
element you would find these @class
attributes:Note that these are attributes of element instances. While we tend to think of the @class
attribute as something that is set in DTDs or XSDs, that is merely a convenience. What's really important is that the attributes are available to XML processors, which will be the case whether they are defaulted in DTDs or specified explicitly in instances—the two are identical to XML processors.
The magic of the @class
attribute is that specialized DITA documents can "just work" when processed by general-purpose specialization-aware processors, such as the DITA Open Toolkit.
One implication of this magic is that you can define new markup without the need to also implement all the different forms of processing that might be applied to that markup—it will just work. To the degree that your specialized markup doesn't require any specialized processing, then you will never need to implement any new processing for it.
If your specialized markup does require specific processing, DITA-aware tools will tend to make adding that processing easier because they tend themselves to be modular. For example, the DITA Open Toolkit provides a general plugin mechanism that makes it easy to implement and deploy specialization-specific processing that extends the out-of-the-box processing using the smallest amount of custom code possible.
There is of course no free lunch. DITA's interchange features do have a cost, namely the imposition of some general constraints and rules that are necessary to ensure the system works.
In particular, a given DITA element must be at least as constrained as its immediate base type. This means, for example, that if the base type requires an "A" element followed by a "B" element then any specialization of the base type must provide "A" or a specialization of "A" and must require it to be followed by "B" or a specialization of B.
For example, because the content model for <topic>
requires <title>
, all specialized topic types must also require <title>
or a specialization of <title>
and must require the title element to be the first child of the topic element.
This means that markup designers do not have completely free reign to structure new markup designs however they might want to. It also means that it will not always be possible to make an existing non-DITA vocabulary into a DITA vocabulary simply by adding the appropriate @class
attributes, because the existing vocabulary may not align structurally with the appropriate base DITA type.
For example, the general DocBook model for titled divisions does not include an element type that corresponds to the DITA <body>
element, which DITA requires be used to hold the direct content of topics. Thus DocBook divisions are not structurally compatible with DITA topics.
The "at least as constrained" requirement also means that elements designed to be the basis for further specialization need to allow appropriate options in their own content models so that they don't prevent reasonable specialized designs. This is why the content models for most of the topic elements are so loose: they have to allow a wide range of possible specializations. It is important to remember that the base standard types were not intended to be directly used for authoring. They were intended to be specialized or constrained as appropriate for specific authoring use cases.
For example, while <body>
within <topic>
allows an unconstrained mix of block elements and <section>
elements, <conbody>
within <concept>
only allows block elements before any <section>
elements. But another specialization of <topic>
might need to continue to allow a mix of block elements and <section>
elements, so the constraint in <conbody>
would be inappropriate in <body>
because it would prevent other legitimate ways of organizing topic content in other specializations.
It's also important to remember that DITA, while developed originally for technical documentation, is not specific to technical documentation and therefore should not reflect markup design decisions that reflect editorial practice specific to technical documentation. DITA is a completely general XML application framework and must therefore accommodate all legitimate requirements within the general constraints of enabling interchange and interoperation.
To experienced XML practitioners the "at least as constrained" requirement may seem like a particularly onerous, or at least annoying, constraint, and it can be frustrating to realize that the way you would have designed a particular bit of markup in the past simply cannot work in a DITA context. It means that you cannot always create a blindly-literal mapping from legacy non-XML structures into DITA structures but will have to work out some amount of structural reordering and a bit of retraining of the people transitioning from the old system to the new. It means you will have to learn the basic DITA structural patterns in order to know how to translate specific requirements into conforming DITA markup designs.
But the important question is not about cost but about value.
The value of DITA is that it dramatically lowers the overall cost of system implementation, use, and maintenance while increasing the inherent value of content by enabling blind interchange over the broadest possible scope. This lower overall cost far outweighs the direct cost of specialization, while the increase in value of DITA-based content increases the value of the overall system. Even if a DITA-based implementation were no less expensive to initially implement than the equivalent non-DITA-based system, it would still have greater value because the content would have greater value and the ongoing cost of ownership of the DITA system will be lower. In fact, even if initial DITA implementation were more expensive than non-DITA options the added long-term value would still justify the DITA-based solution. But DITA-based systems are demonstrably less expensive to acquire and implement than any possible non-DITA solution that satisfies the same set of requirements.
That is, by accepting a few constraints on your freedom to define arbitrary markup structures and by taking the effort to learn the basics of DITA, you gain huge leverage that enables implementing very sophisticated XML systems with a minimum cost of both startup and ownership compared to any other way you could satisfy the same requirements using a non-DITA solution.
Part of the point of these tutorials, and of DITA for Practitioners in general, is to make the necessary knowledge available so that the cost of learning what you need to learn is lowered as well.
So while there is a cost to the specialization feature in terms of design constraints and increased complexity for general-purpose, specialization-aware processors and some learning of new technical details and concepts for practitioners, the value returned making the investment of those costs is remarkable indeed. And the value will continue to increase as network effects serve to make more and more DITA-aware knowledge and processing available, which means it's available to all. That suggests that an investment in DITA-based systems is the safest XML system investment you can make today.
As a practitioner myself I would refuse to do a from-scratch XML implementation that was not DITA-based for the simple reason that it would be a disservice to the client to do anything else, because anything else would be more expensive, both in the short term and the long term, than a DITA-based solution. The only non-DITA-based systems I work on any more are legacy systems that, for business reasons, cannot be (immediately) replaced with DITA-based equivalents. And it is painful for me to do so, because everything that DITA makes easy is hard in these systems.
DITA is a compelling technology not because it does cool stuff (although it does) but because through the specialization feature it dramatically lowers the initial and recurring costs of doing anything with XML for documents intended primarily for human consumption. Thus, even XML applications with the most basic requirements will benefit from a DITA-based solution simply because it will be cheaper, probably much cheaper, than any other XML-based alternative. And when you realize that you actually do need some of the really cool stuff DITA does, it's there waiting for you.
This section provides tutorial examples of creating the different types of DITA configuration and extension components, with a focus on the mechanics, not the concepts.
Some the DITA-imposed requirements are required by the syntax and semantics of DTDs and XSDs, others are simply arbitrary decisions that had to be made and, having been made, make replication easy.
In short, once you learn the basic rules for how to organize the components of a vocabulary module, constraint module, or document type shell, you will be able to quickly understand the markup details of any conforming DITA module. You will also be able to quickly create new components because it is largely an exercise in copying, pasting, renaming, and deleting what you don't need.
What you don't have to do is worry about the details of how you'll structure and organize your DTD declarations or schema components. You won't have to work out clever schemes for modularity or conditionality.
You do need to have a basic working understanding of DTD or XSD syntax, depending on what technology you choose for your vocabulary modules. These tutorials tell you exactly what to type, so you can do them even if you don't have a working understanding of DTD or XSD syntax, but you will eventually need to know why you're doing what you're doing.
You should also, at some point, read the "Configuration, specialization, and constraints" section of the DITA Architectural Specification, which defines the implementation requirements reflected in these tutorials.
These tutorials are not intended to give you a deep conceptual understanding of how vocabulary modules work, they're intended to make it possible for you to create your own before you have a full understanding of why they work they way they do. One of the cool parts of DITA is that you can in fact do that.
If you follow these tutorials you should be able apply the processes demonstrated to your own configuration and extension requirements, assuming you've already worked out the markup design itself. A lot of specializations are either simple addition of new mention elements (specializations of <keyword>
or <term>
) or metadata elements. The easiest specialization to implement is an attribute domain that adds a new @props
specialization.
While the creation of new document shells and modules is a largely mechanical process it is one that involves a lot of moving parts and fiddly bits. There are many opportunities for error and many of these errors can be difficult to track down because of all the pointing and indirection going on in the files involved.
To ensure success you must work carefully and methodically. The tutorials presented here reflect the methodical approach that I depend on.
You must test from the very beginning. This is generally referred to as "test-driven development". The general practice is to create test cases first, verify that they fail (e.g., documents don't validate, transforms produce no output, etc.), then implement until the test cases pass. When they pass you know you're done.
You must ensure that you are in a known working state before making any change. If you do that, then you know that the last thing you did caused the breakage when something stops working. It means you only have to back out one change in order to get back to a good starting state.
Sometimes things aren't working because something doesn't work the way you thought it did. If you're getting an inexplicable failure, test your basic assumptions to ensure things work the way you think they should be working. For example, when debugging references to DTD components through catalogs, you can test your assumption that the catalog is correct by tracing down through a chain of references. The OxygenXML editor's "open file at cursor" feature makes this easy, as you can start with the root map and just chain down through the catalog-to-catalog and catalog-to-file references to make sure everything there is hooked up correctly (other editors have similar features). Likewise, you can use search and replace to verify that strings match between DOCTYPE declarations or schema location values and catalog entries.
It's also good to verify you're changing the file you think you are. With the Toolkit there are often two or three copies of files: the copy you develop against in your source tree, the copy deployed to the Toolkit instance, and, for "template" files, the copy generated by the Toolkit's integration process. It's easy to accidentally open the wrong copy and then wonder what happened to your changes, either because you forgot to deploy them or because you modified the copy in the Toolkit and then redeployed over your changes from your source tree.
If you have multiple Toolkits installed you should verify that you're running the code you think you are, since it's easy to run against the wrong Toolkit.
Implement in small increments. For example, start with all the new files for a related set of shells and vocabulary modules in one directory so you don't have to worry about setting up catalogs initially. Once everything works in that context, then reorganize the files to reflect the desired organization structure, creating and testing the necessary catalogs.
Likewise, if you are creating several new document type shells, implement one completely before implementing the others, to ensure that you're not copying any mistakes.
A lot of the work in creating new document shells and modules is cutting and pasting from existing files to create new ones. It's part of what makes it so fast to create new modules. But it also has the potential for insidious cut-and-paste errors because you copy something you shouldn't have or inadvertantly copy the same mistake multiple times.
Use a code control system like Subversion or VCC and commit your code frequently. You do not want to let uncommitted changes sit too long because it risks data loss and time loss. By testing early and often you know that you can commit code that isn't broken, even if it's not complete. If things subsequently go totally wrong you can simply restore from your last commit and start over. As a general rule you never want to be at risk of losing more than an hour or two's worth of work, certainly not more than a day's work. Even if you are simply supporting yourself as a lone author you should use code control to manage your code and your authoring work. There are low-cost and free Subversion services or you can just set up a respository on your work machine (just make sure you back up the repository itself regularly).
DITA vocabulary modules can be implemented using DTDs or XML schema documents (XSD). Which should you use?
At the time of writing, most DITA users use DTD-based vocabulary modules. However, you can use XSD-based modules if you want to or must in order to accommodate the tools you're using or the demands of a particular user community. For example, the Syntext Serna editor only uses XSDs to drive in-editor tag awareness (it can also use DTDs for validation, but not for in-editor tag awareness).
Which raises the question: should I use DTDs, XSDs, or both?
The short answer is "use DTDs unless you absolutely have to use XSDs" for now. This answer will hopefully change in the future.
The reason for this is simple: DITA's XSDs currently depend on the redefine feature of XSD. Unfortunately, the definition of redefine in the XSD 1.0 specifications is ambiguous to the point that different conforming XSD processors will produce different results for the same set of XSD documents. For this reason, the redefine feature is deprecated in XSD 1.1 (under development at the time of writing). Unfortunately, as currently formulated, DITA's XSDs depend on one particular interpretation of redefine, the one implemented by the Xerces 2.x parser.
This means that some conforming XSD processors will consider DITA XSDs invalid and will be unable to process them. This means in turn that you cannot reliably interchange XSD-based vocabulary modules and document type shells except to the degree that all the interchange partners are using compatible XSD processors.
However, because the Xerces parser does the right thing and because so many tools use the Xerces parser (or can use it), including the Open Toolkit, and because all the major commercial DITA-aware editors support DITA XSDs, you can create environments where XSD-based DITA documents can be processed reliably. But you cannot expect that all schema-aware XML processors that are not specifically DITA-aware will be able to process XSD-based DITA documents.
DITA 1.x can't use namespaces so that obviates the namespace advantage of XSDs (DITA's modularity features are the functional equivalent of how one can use namespace-based XSDs to create true document type modules, they just don't use namespaces to do it).
The XSD 1.1 spec, currently at working draft stage as of December 2009, defines a new feature, "override", that is intended to functionally replace the redefine feature and provide a more flexible extension mechanism, one that is a better match to what DITA needs. If the override feature works as we want it to (the DITA TC has provided input to the XSD Working Group on the override feature on DITA's specific requirements) and it is implemented by most or all XSD-aware processors, then it will be possible to rework the DITA XSDs to use override rather than redefine, at which point XSDs can become the obvious better choice for vocabulary module implementation.
Until that time, however, the easiest and safest route is to stick with DTD-based shells and vocabulary modules.
If you are using XSD for your DITA documents you will very likely want to process them outside of the Toolkit or an IDE like OxygenXML. Doing this requires a little bit of one-time setup.
At the time of writing, the Saxon XSLT engine is packaged in three versions: Home Edition, Professional Edition, and Enterprise Edition. Of these three packages, only Enterprise Edition provides schema-aware XSLT processing directly.
However, because Saxon can use any JAXP parser, you can configure it to use a schema-aware processor. This in turn is simply a matter of turning on a couple of options on the Apache Xerces parser.
You do this by creating a simple Java class that wraps the Xerces parser in order to set its configuration and then use that class as the parser class used by Saxon, which you can specify on the command line.
This configuration is done for you automatically by the Open Toolkit but if you want to run Saxon outside of the Toolkit you may need to set this up.
This class as shown depends on the Apache resolver.jar library, which does the catalog resolution you need.
You can simplify deployment and testing of document type shells and vocabulary modules by packaging them as Open Toolkit plugins.
The DITA Open Toolkit provides a general plugin facility that makes it easy to integrate local shells and new vocabulary modules into the Toolkit's master entity resolution catalog. This makes the shells and modules immediately available to all processors that use the Toolkit's catalog, including, of course, the Toolkit itself.
If your DITA-aware editor uses the Toolkit's catalog to resolve DTD and XSD references then by deploying your modules to the Toolkit your editor uses, you should be able to immediately start validating and editing with your shells and modules. For example, the OxygenXML editor is configured by default to use the master catalog of the Open Toolkit provided with the Oxygen editor. By deploying your shells and modules as Toolkit plugins Oxygen becomes immediately able to use them with no additional configuration required. This makes it very quick to develop and test new shells and vocabulary modules.
Entity resolution catalogs are an OASIS standard and are supported by most XML-aware tools. A catalog provides a mapping from public identifiers, system identifiers (such as URNs) and URIs, to files on a local system.
The Open Toolkit's plugin mechanism works through pre-defined extension points that plugins can plug into [see general section on creating Toolkit plugins]. One extension point is in the master entity resolution catalog, catalog-dita_template.xml.
Neither the Toolkit nor the DITA standard say how you have to organize your document type shells and modules. The practice I use is to package all the document type shells and modules for a given project (or that otherwise would be expected to work together or that are developed and deployed as a unit) into a single plugin, named "unique-package-prefix.doctypes", where unique-package-prefix is a Java-style reverse Internet domain name, e.g. "com.planetsizedbrains", resulting in a plugin named "com.planetsizedbrains.doctypes". The point of the Java-style name is to ensure that the plugin's name will be unique in any Toolkit instance it's deployed to.
As deployed to the Toolkit a plugin is just a directory containing the files that make up the plugin.
doctypes
that then contains one subdirectory for each distinct vocabulary module or document type shell. For example, if I have a shell for each of the base topic types plus a new attribute domain module, the directory structure in my plugin would be:plugin.xml
, which defines the plugin to the Toolkit and controls how it is integrated with the appropriate extension point. catalog.xml
, which is the file that will be integrated with the extension point in the main catalog-dita_template.xml
file. The doctypes/
directory under the main plugin directory contains a master catalog file that then includes the catalogs from each module-specific directory. This organization provides a general-purpose root directory for your doctypes regardless of how they might be packaged for different tools.
catalog.xml
file providing the appropriate catalog entries for the files in that subdirectory. If I expect to have both DTD and XSD versions of my shells or modules, I create another level of subdirectory, one for DTDs and one for XSDs, like so:With this organization, the catalog.xml
files that provide the actual mapping from public IDs or schema location urns to files go in the dtd
or xsd
directories. Each module's main directory just contains a catalog.xml
file that simply includes the catalog files from each of the subdirectories. This approach keeps everything self contained at each level. If you add or remove a module from your plugin you simply update the top-level catalog file in the doctypes/
directory to add or remove a reference to that module's top-level catalog file and everything just works.
catalog.xml
file under the com.planetsizedbrains.doctypes
directory would look like this:com.planetsizedbrains.doctypes/doctypes/
directory looks like this:This is the catalog that will be included by the <nextCatalog>
entry add to the main catalog-dita.xml
file.
dtd
or xsd
directory for a document type shell, the catalog would look something like this:The general pattern here is that there is a catalog in each directory that points down into the next directory. Only the top-level catalog and leaf catalogs vary—the intermediate catalogs are always the same. This makes it easy to copy an existing module or shell's directory tree as the starting point for a new module or shell. This also makes it easier to reorganize the directories if necessary, since no single catalog points down more than one directory level.
plugin.xml
file goes in the top-level directory. For a document type plugin it looks like this:The bit in bold is the plugin identifier and is the only part you must change for your own module. The <feature>
element is always the same for a doctype plugin. The plugin name must be unique across all plugins in your Toolkit, so the easiest and most reliable thing is to use the same Java-style name for the plugin ID as you used for the plugin's directory.
plugins/
directory of your Toolkit and run the integrator.xml
Ant script, e.g., from the root directory of the Toolkit:Your shells and modules should be ready to use. You can verify the integration by opening the Toolkit's catalog-dita.xml
file and looking for a reference your plugin's top-level catalog file. If you are using an editor like OxygenXML that lets you follow file references (in Oxygen you put your cursor on a line that contains a reference to a file and press "ctrl+enter") you can use that feature to follow the chain of references from catalog to catalog to make sure you have everything hooked up correctly. But if you followed the file organization pattern shown here, it should be good.
[Need a reference to a general topic on troubleshooting entity resolution issues.]
All of the tutorials that follow ultimately result in components that can or must be packaged as Open Toolkit plugins.
A plugin for the Open Toolkit is simply a directory containing the files that make up the plugin.
To use a plugin with a Toolkit instance you "deploy" the plugin by copying the directory to the plugins
directory and running the integrator.xml Ant script included with the Toolkit (see Packaging Document Type Shells and Vocabulary Modules as Toolkit Plugins).
This raises the question of how to actually do the copying, especially during development, where you will be making many changes and wanting to continuously re-deploy your plugin as you develop and test it.
As a general practice you do not want the source code for your plugin to be managed in the directory structure of the Toolkit itself. You want to manage the source in a separate work area and then copy it to the Toolkit as you go.
Another reason to keep your plugin source separate from the Toolkit is that the source file organization may not match how the files need to be organized for use in a plugin. For example, you may need to support one or more editors that expect a specific organizational structure that is different from what you would use in a plugin. Thus you may need to produce several different packagings of the same document type files for use by different tools.
There are, of course, many ways to deploy plugins: you can simply copy the files manually using Windows Explorer or Finder or whatever. You can use a batch or a shell script. Or you can use Ant.
The Open Toolkit is based on Apache Ant, which is a general build process scripting facility. Ant is used very heavily in Java projects to manage compiling and packaging Java code, but Ant is general purpose and can be used for lots of things.
One thing you can do easily with Ant is copy files from one place to another. Thus you can create an Ant script that will copy the source files for your plugins to the appropriate Toolkit and run the integrator.xml Ant script in one go.
The main challenge here is telling the Ant script where the Toolkit is on your local machine.
My practice is to have a file named build.properties
(Windows) or .build.properties
(Linux or OSX) in my home directory that defines a property named "dita-ot-dir" and sets it to the location of the Toolkit I want to deploy to. In my project-specific build scripts I then include the build.properties
file and use the dita-ot-dir property in copy tasks that deploy my Toolkit plugins. Note that the script below defines the property "dita-ot-dir". This definition of the property will be used only if dita-ot-dir is not defined in eitehr .build.properties
or build.properties
. By the property definition precedence rules in Ant, the first definition of a property wins, so the definition in the main Ant script is ignored if dita-ot-dir is defined in either of the included properties files.
build.xml
by Ant convention) that will deploy a set of Toolkit plugins where the plugin source files are in a directory named toolkit_plugins
under the main project directory:If you're not familiar with Ant this may look a lot more complicated than it really is.
<target>
element represents a separate callable part of the script. In this script the main target is named "deploy-toolkit-plugins". It's also set as the default target so that if you simply run the script without specifying a target it will run the deploy-toolkit-plugins target automatically. Likewise, the Ant command looks for a file named build.xml
by default, so from a command line, if you are in the directory containing the build.xml
file, you can just type "ant" and it should work (assuming the "ant" command is on your path):The targets listed are those with @description
attributes.
plugins
directory. It also runs the integrator.xml
script that is part of the Toolkit itself. This two-step process allows you the opportunity to pull files together from different source locations into a single set of files to be deployed. For example, my normal practice is to manage all my vocabulary modules and document type shells in a source directory called doctypes
and all my Toolkit plugins in a directory called toolkit_plugins
. In the toolkit_plugins
directory I have directories for each distinct document type plugin with just the files that are Toolkit-specific (usually just the plugin.xml
file). I then have my dist-toolkit-plugins Ant target merge the files from the toolkit_plugins
directory with the files from the doctypes
directories to create complete Toolkit plugins.
The Ant property ot-plugins-base-name holds the common directory name prefix for all of the plugins managed by this Ant script, which makes it easy to delete existing deployed plugins and otherwise copy only the files you want. You would set this property to match whatever you've used for your plugins (I recommend the Java-style reverse domain name convention, e.g. "com.example.myproject").
One you get this sort of pattern set up it becomes easy to replicate.
Once you have the Ant script working you can run it in a couple of different ways.
An easy way is to start a Toolkit command-line shell using the startcmd.bat
or startcmd.sh
scripts that are part of the full Toolkit installation. These scripts set up a command line environment with everything set up correctly so you can run the Toolkit Ant scripts.
Once you've run startcmd
you can come back to the command window and rerun the deploy script just by hitting the up arrow and enter.
If you use Eclipse as your development environment you can run the Ant script from within Eclipse once you do a one-time setup of Ant with the Open Toolkit's java libraries. See Setting Up Your Development Environment.
You can also set up a standalone batch or shell script that sets up the execution environment as startcmd
does and then runs your Ant script. That may be the most convenient approach if you expect other people to run this process with minimal setup.
You may have noticed in my examples that the public identifiers I use are URNs, not SGML-style public identifiers as used for the standard DITA modules.
This is because public identifiers are nothing more than magic strings, so it absolutely doesn't matter what syntax you use as long as it's reasonably likely to be globally unique. The only XML-defined requirement is that the public ID consist of the characters allowed by the production "PubidChar" in the XML standard (essentially characters allowed in URIs).
The use of public identifiers is pretty standard practice in XML and in the DITA community especially. However, in XML, public identifiers are completely pointless.
In XML, you must always have a system identifier. Even if you have a public identifier, you must also have a system identifier. Which immediately raises the question of why have a public identifier at all?
Why indeed?
I used to argue exactly that: that public IDs were pointless, that there was no useful difference between having a public ID and using a URN as your system ID because neither can be resolved directly and thus both require some sort of mapping and entity resolution catalogs can map both public and system IDs with equal facility. This is all true.
In addition, in an environment where document type shells and modules will be deployed to many locations (many different Toolkit instances) it is absolutely necessary that all references to shells and module components be indirect and that everything be properly mapped. Thus having directly-resolvable system IDs would be counter productive—you want system IDs that cannot be resolved directly so that any mapping configuration bugs cause early and immediate failure in your development environment. (This is why I make a point of ensuring that the system IDs in all of my shell document types consist of just the filename of the target module, regardless of where it might be relative to the using module—this ensures it won't be resolvable and thus mask a catalog mapping bug.)
Yet, you will notice that in all the examples in this book I use public identifiers? Why?
The answer is simply that the use of public identifiers is so ingrained and, in some cases, required by tools even when it shouldn't be (especially tools with an SGML legacy), that it simply proved too quixotic to stick to my principle and not provide or use public IDs. So I use them even though they are totally pointless. But I use URNs partly to subtly make the point that they are pointless because its more obvious that a public ID that is a URN is functionally identical to a system ID that is a URN (because they both use the same syntax and both require mapping in order to be resolved).
Whatever you do do not use URLs for public identifiers. It runs the risk of systems trying to resolve them. Always use URNs or SGML-style public IDs.
And please remember that in DITA the public ID for a document type shell or module means nothing. The only thing that matters is the value of a document's @domains
attribute. DTDs and XSDs are just a convenience for authoring and (weak) validation and nothing more.
Any DITA tool (or, for that matter, any XML system generally) that puts too much emphasis on public IDs, and especially on the public IDs of document types, is fundamentally broken because it reflects a misunderstanding of what DTDs do and don't represent and, in DITA especially, a misunderstanding of what constitutes a DITA document type.
Goal: Define a document type shell that omits domains you don't want and integrates a third-party domain you do want.
Most, if not all, production uses of DITA require the creation of document type shells. Fortunately, it's easy to do.
Document type shells serve to integrate vocabulary and constraint modules into a working DTD or XSD document that can be used to validate documents that should conform to the document type.
Often the only thing you need to do to configure your DITA environment is create document type shells, at least initially. For example, it is likely your writers do not need all the domains defined by the DITA standard and included in the OASIS-provied document type shells. You may also want to allow the nesting of different topic types or similar configurations that do not, themselves, require new specialization or constraint modules.
In a production DITA environment (meaning one where you will be doing real work as opposed to simply evaluating DITA technology) you should always create local shells even if you have no immediate need to impose constraints, adjust domain usage, or do specialization.
The reason for this requirement to create local document type shells is that as soon as you do need to do any of these things (and you will, sooner rather than later), you must have local document type shells. If you have not created local shells in advance, then any existing documents will have to be modified to point to the new shells you must now create. That could be a very disruptive change depending on how your documents are managed and which tools you are using to manage and author them.
Much better to set up your local shells first, get the configuration and deployment details worked out, and then you don't have to worry about future requirements that will require changes to the shells because you can modify the shells themselves without the need to modify existing documents (because the DTD or XSD pointers in the documents don't need to change in that case).
The details of public ID or URN assignment and deployment depend on what specific tools you are using. In the case of the Open Toolkit, the best thing to do is to package the shell as part of a Toolkit plugin that contains an entity resolution catalog entry for the shell (which serves to assign the public identifier) and integrates the catalog into the Toolkit's master catalog (which serves to deploy the shell, making it available to anything that uses the Toolkit, including the Toolkit itself).
(There is an implicit message here, which is that tools that depend on the Toolkit tend to simplify the overall task of DITA system configuration and maintenance by limiting the number of system components that have to be created or updated to reflect a change to vocabulary components. This is one reason that OxygenXML, in particular, serves as an effective DITA development and authoring environment: it uses the Toolkit directly to access all DITA-related vocabulary components. This, coupled with Oxygen's built-in specialization awareness, means that you can deploy your local shells, constraint modules, and vocabulary modules to one place and all DITA editing and processing through Oxygen just works.)
This tutorial demonstrates the process of creating a DTD-syntax document type shell.
In this tutuorial you will create a document type shell for <topic>
that removes the technical-documentation-specific domains and adds a reference to the XML markup domain (defined in Element Domain Specialization Tutorial).
The other tutorials also include instructions for creating shells that integrate the components created in those tutorials. This tutorial shows you the basic process for shell creation, showing both removing existing references and adding new references.
Create a directory in your workspace to hold the new document type shell, e.g., "workspace/myTopicShell
". In the myTopicShell
directory create the directory dtd
.
Find the file topic.dtd
in the technical content area of the standard DITA DTD distribution (dtd/technicalContent/dtd/topic.dtd
in the files packaged with the Open Toolkit) and copy it into the workspace/myTopicShell/dtd
working directory as file myTopic.dtd
.
<topic>
: topic.dtd
, in the technical documentation area, and basetopic.dtd
, in the base area. The topic.dtd
shell integrates all the different topic domains that are part of the standard DITA vocabulary. The basetopic.dtd
only integrates the highlighting, indexing, and utility domains. For thus tutorial I'm having you use topic.dtd so that you get experience removing things. myTopicShell
directory, create a new XML document named mytopic-test-dtd.xml
that uses myTopic.dtd
as its document type with this content:This document serves as your test document to verify that you haven't made any syntax errors in the new shell.
Open this document in your XML editor (e.g., in OxygenXML) and validate it. It should be valid.
@domains
attribute component text entity in the &included-domains;
entity. Thus, deleting a domain module means removing all four of these bits for a given domain.
myTopic.dtd
, perform these steps: %pr-d-dec;
parameter entity and delete it:&included-domains;
entity. Delete the reference to the &pr-d-att;
entity:%pr-d-def;
parameter entity and delete it:myTopic.dtd
file, any validation errors must be the result of something in the DTD file itself. Repeat this process for each of the other domains you don't want.
Notice that the naming convention used for domain-related components makes it easy to find the bits for a given domain: just search on "domainShortName-d" where domainShortName is the short name for the domain, e.g., "pr", "ui", "sw", etc.
Which is just defining %pre;
to be "pre", which is effectively doing nothing to the original definition of %pre;
. However, it doesn't hurt to have it here and it gives you a ready place to add in any new domains you might integrate later. You can remove this declaration entirely if you want.
@domains
attribute text entity in the &included-domains;
text entity declaration. catalog_dita.xml
file that is in the Open Toolkit's top-level directory. softwareDomain.ent
has these declarations:Reflecting the fact that the software domain specializes from <pre>
, <ph>
, and <keyword>
.
@domains
attribute text entity, which should be named "domainShortName-d-att", e.g., "sw-d-att". This should also be declared in the .ent file for the domain. For the software domain it looks like this:%xml-d-keyword;
&xml-d-att;
%hi-d-dec;
parameter entity. Copy it and paste a new copy into myTopic.dtd
immediately after the original:%xml-d-keyword;
parameter entity to the declaration of the %keyword;
parameter entity:Note the leading "|" character added after "keyword " in the original declaration. This parameter entity is used to build up an OR group of element type names, so you need to add the "|" (OR) connector between "keyword" and "%xml-d-keyword;".
&included-domains;
text entity. Add a reference to the &xml-d-att;
text entity:%hi-d-def;
parameter entity. Copy it and paste a new copy immediately after the original:xmlDomain.mod
:If the document validates, see if you can enter any of the element types from the domain, such as <xmlelem>
or <xmlatt>
, into a paragraph. You should be able to.
That's it, you're done. You've successfully created a new topic type shell that removes domains you don't want and adds a new domain you do want.
It should be clear from following this tutorial that creating document type shells is an entirely mechanical process and that once you've done it once or twice it becomes very easy and quick.
This tutorial did not show how to package your new shell as a Toolkit plugin. For that, see Packaging Document Type Shells and Vocabulary Modules as Toolkit Plugins.
This tutorial shows how to create a topic type shell. Creating map type shells is exactly the same.
This tutorial demonstrates the process of creating an XSD-syntax document type shell.
XSD document type shells use two XSD features to create complete XSD-based DITA document types: <xs:include>
and <xs:redefine>
. Includes are used to include components that are not being modified through redefine. Redefine is used to include components for which one or more groups defined in the component are being redefined, either to extend base groups with domain-provided element types or to restrict groups through constraint modules.
Create a directory in your workspace to hold the new document type shell, e.g., "workspace/myTopicShell/xsd
".
Find the file topic.xsd
in the technical content area of the standard DITA XSD distribution (schema/technicalContent/xsd/topic.xsd
in the files packaged with the Open Toolkit) and copy it into the workspace/myTopicShell/xsd
directory as file myTopic.xsd
.
The DITA 1.2 schema distribution includes two document type shells for <topic>
: topic.xsd
in the technical documentation area, and basetopic.xsd
in the base area. The topic.xsd
shell integrates all the different topic domains that are part of the standard DITA vocabulary. The basetopic.xsd
only integrates the highlighting, indexing, and utility domains.
myTopicShell
directory, create a new XML document named mytopic-test-xsd.xml
that uses myTopic.xsd
as its document type with this content:This document serves as your test document to verify that you haven't made any syntax errors in the new shell.
Open this document in your XML editor (e.g., in OxygenXML) and validate it. It should be valid.
@domains
attribute value in the XSD shell (unlike in DTDs, there is no way to parameterize the value of an attribute in XSD schemas). myTopic.xsd
shell, do the following: <xs:include>
element for the programmingDomain.xsd
file and delete it or comment it out:<xs:group>
elements that refer to a group starting with "pr-d-" and delete them:Because the XSD uses normal XML markup it's harder to introduce syntax errors than when modifying DTDs so it's unlikely you would have an invalid shell after following this set of steps. The most likely error would be failing to remove a reference to a domain extension group, but an XSD-aware editor like OxygenXML will flag in the editor a reference to a group that isn't defined (in this case, because you would have already deleted the reference to the domain's XSD file, which defines domain extension groups).
Repeat this process for the software, user interface, and hazard domains.
<xs:include>
of the domain's XSD module file (XSD domain modules consist of a single XSD file). @domains
attribute contribution in the "domains-att" attribute group declaration. catalog_dita.xml
file that is in the Open Toolkit's top-level directory. softwareDomain.xsd
has these declarations:Reflecting the fact that the software domain specializes from <pre>
, <ph>
, and <keyword>
.
@domains
attribute contribution is "(topic domainShortName-d)" for a domain that specializes directly from topic and not from another domain. The @domains
attribute value for the domain should also be documented in an XSD annotation at the start of the domain's XSD file, as in this example from softwareDomain.xsd
:<xs:include>
element for the highlight domain. Copy it and paste a new copy into myTopic.xsd
immediately after the original:@schemaLocation
value with the URN for the XML domain:<xs:redefine>
for commonElementGrp.xsd and then the group named "keyword". Add a reference to the "xml-d-keyword" group:@default
attribute:If the document validates, see if you can enter any of the element types from the domain into a paragraph, such as <xmlelem>
or <xmlatt>
. You should be able to.
That's it, you're done. You've successfully created a new topic type shell that removes domains you don't want and adds a new domain you do want.
It should be clear from following this tutorial that creating document type shells is an entirely mechanical process and that once you've done it once or twice it becomes very easy and quick.
This tutorial did not show how to package your new shell as a Toolkit plugin. For that, see Packaging Document Type Shells and Vocabulary Modules as Toolkit Plugins.
This tutorial shows how to create a topic type shell. Creating map type shells is exactly the same.
Goal: Define a topic constraint module that limits the content of <p>
to just character data and a few inline element types.
Constraint modules allow you to adjust the content models and attribute lists of individual elements in any vocabulary module used by a given document type. The primary rule is that your changes must be at least as constrained as the base content model or attribute list, meaning that your constraints cannot allow anything that is not allowed by the base element type or attribute.
In general the base DITA content models are very loose in order to allow maximum flexibility in specialization. This leaves you a lot of room for constraint.
In this tutorial the constraint module limits the content of <p>
elements within topics to a small set of inline elements:
(bold), <i>
(italic), and <u>
(Underline).1
For both DTD and XSD the task is the same: find the appropriate parameter entity (DTD) or group (XSD) that defines the base content model for <p>
and redefine it to reflect the constrained content model.
The constraint module is then integrated into the document type shells that need to impose these constraints.
A DTD-syntax constraint module consists of a single file that contains the overrides for the base elements or attributes.
Constraint modules should be named "qualifiertagnameConstraints.mod" where qualifier is descriptive of the constraints applied and tagname is the topic type, map type, or domain to which the constraint is applied.
Note that a given constraint module can only define constraints for a single topic type, map type, or domain. This ensures that constraint modules map one-to-one with the vocabulary modules they constrain. Likewise, for a given element type or attribute you can have at most one constraint module.
For this tutorial the constraint domain should be called "highlightOnlyTopicConstraint.mod
".
Create a directory named "highlightOnlyTopicConstraint" and in that directory create the file highlightOnlyTopicConstraint.mod
.
highlightOnlyTopicConstraint.mod
and add a descriptive header comment:@domains
Attribute Text Entity Like vocabulary modules, constraint modules must be declared in the @domains
attribute of each top-level map or topic file that uses the constraint.
Constraint modules are indicated by names of the form "moduleName-c", e.g., "highlightOnlyTopic-c". As for vocabulary modules, you declare a text entity that holds the @domains
attribute contribution. This entity is named "tagname-constraints", reflecting the fact that there can be at most one constraint module for a given element type in a given document type shell.
What do you do if you have multiple constraint modules for a given element type that you want to use together?
In that case you must create a new constraint module that combines the multiple constraint modules together. For example, if someone gave you another topic constraint module that constrained a different element type, you would combine those declarations with the declarations in the highlight-only topic constraint module.
When the two constraints constrain different element types then combining them is easy: just copy all the declarations from one constraint module into the other and save the result as a new file with a new module name.
If the constraints constrain the same element types then you must work out how the constraints should be combined in order to create a new constraint module.
The base content model for the <p>
element is defined in a parameter entity named %p.content;
(by the general DITA 1.2 rules for constructing DTD-syntax element type declarations). Thus we need to declare our own version of %p.content;
with the content model we want.
We want to allow only #PCDATA and the element types
, <i>
, and <u>
, or any specializations of those types that might be integrated with a given document type that uses this constraint.
To allow specializations of these element types we need to reference the tagname parameter entities for them, not the bare element type names. That is, we want to use "%b;" not just "b" in the content models. Because of the way parameter entity declaration precedence works in DTDs we have to declare the tagname parameter entities in the constraint module to ensure they are declared before they are used in the content model.
Given this knowledge, add the following parameter entity declarations to the constraint module file:
That's the entire constraint module.
It may see odd that we have to declare tagname entities that are already declared in the base module. However, there is an order of inclusion problem that can't be worked around any other way.
In DTDs, the first declaration of a parameter entity name wins. This is why the module files are included last in document type shells: they have to give domain modules and constraint modules the opportunity to override any parameter entities declared in the base module.
Likewise, constraint modules are included after any domain entity files and after the domain integration parameter entities in the document type shell so that they will use any element-type-specific integrations in the constrained content models they define. But because the tagname parameter entities used in the constraint module may not be overridden by domains in a given shell, the constraint module has to declare the tagname parameter entities locally just to be sure.
For testing purposes, copy the standard topic.dtd
file to a convenient location, either in the same directory as the constraint module file or in a nearby directory. To make its purpose clear you can name it something like topic-with-highlight-constraint.dtd
if you want.
&included-domains;
text entity to include a reference to the &topic-constraints;
text entity:This adds the declaration of the topic-element-type constraint module to the @domains
attribute for the <topic>
element as configured in this document type shell.
The topic.dtd file you started with may or may not have the "CONTENT CONSTRAINT INTEGRATION" comment. If it's not there, add it.
<topic>
document in the same directory as the document type shell DTD with this content:Validate this document. The validator should report that <keyword>
is not allowed within <p>
, that only
, <i>
, and <u>
are allowed. In a DTD-aware editor you should also be able to inspect the content model to see that it only allows
, <i>
, and <u>
. Remove the <keyword>
element and verify that the topic is then valid.
In an XML-aware editor you should be able to inspect the effective value of the @domains
attribute to verify that the constraint module is properly declared. If you apply the Toolkit to the topic and keep the temp directory you can look at the intermediate topic file generated by the Toolkit to see what it produced for the @domains
attribute.
If you have made any typing or copying errors in the DTD declarations the parser will tell you, although the errors are not always obvious from the messages provided by the parser.
You can now package the constraint as a Toolkit plugin and integrate it with your other shell document types, if you want. See Packaging Document Type Shells and Vocabulary Modules as Toolkit Plugins.
XSD constraint modules consist of one or two XSD documents that redefine the content model or attribute list to be constrained. Whether the constraint requires one document two depends on the details of the constraint being applied and the group being constrained. This particular constraint requires an intermediate XSD file in order to work around limitations in the way the redefine feature works. Essentially, we have to clear the content of <p>
and then extend it, which requires two levels of redefinition.
Eventually you will move this shell schema to a different directory, but for now putting all the pieces in one directory makes setup and testing easier. Once everything is working in this location you can reorganize the files and know when you've got everything hooked up right again.
<p>
element, so the first task is to find where p's content model is defined in the XSD files that make up the base <topic>
vocabulary module. One way to do this is to search for 'name="p.content"' across all the standard XSD modules (for example, using OxygenXML's "Find in files" feature or using Search in Windows Explorer"). You should find the group definition for "p.content" in commonElementMod.xsd
. It looks like this:highlightOnlyPConstraintsInt.xsd
and give it this content:This schema document redefines <p>
as declared in commonElementMod.xsd
to be an empty group. This document also defines a new group containing the new content model we want for <p>
.
highlightOnlyPConstraintsInt.xsd
and defines "p.content" to use the "p-highlight-only.content" content group also defined in highlightOnlyPConstraintsInt.xsd
:This includes the constraint module in the XSD document type shell.

, <i>
, or <u>
in it (e.g., <keyword>
).
, <i>
, and <u>
within <p>
. At this point you could package the constraint module and the shell document type into Toolkit plugins.
Goal: Declare an attribute domain vocabulary module that provides a new conditional (property) attribute.
You can specialize from the @base
and @props
attributes. For conditional processing (filtering and flagging), this lets you add your own attributes rather than using @otherprops
, which can be clearer to authors and implementors.
For this tutorial, the goal is to declare an attribute domain module that provides a new conditional attribute, in this case the "phase of the moon" condition, useful for medical information for werewolves and other lycanthropes.1
Attribute domains are the easiest form of specialization. It's so easy that you should never complain about missing conditional attributes in the base DITA specification, just declare your own.
The specialization requires two things:
1. For each specialization of @props
, a .ent file that defines the attribute and a corresponding domain declaration. This is the "attribute domain vocabulary module".
2. Modification of any document type shells that need to reflect the specialized attribute (e.g., topic.dtd, reference.dtd, or your own specialized topic types' document type shells). You integrate the specialization attribute domain through the shell DTDs.
For this tutorial we want to create a specialization of @props
called "phase-of-moon" that takes as its value one or more moon phase names (e.g., "full", "new", "waning", "waxing", etc.).
Note that an attribute domain always defines exactly one attribute. You cannot declare multiple attributes in a single attribute domain module.
Step 1 is to create the attribute domain declaration as follows.
First, create a file named "phase-of-moonAttDomain.ent
".
moonPhasePropsDomain.ent
", create these two declarations: The first declaration declares the @phase-of-moon
attribute and puts it in a parameter entity so we can add it to the DITA-defined %selection-atts;
parameter entity via the %props-attribute-extensions;
configuration parameter entity in document type shells.
The second declaration is the domain declaration string for the attribute domain. It will be added to the value of the @domains
attribute declared for each topic or map element type. In the value, the "props" keyword indicates that the attribute is a @props
attribute specialization and not a @base
attribute specialization.
You should of course add an appropriate descriptive header to the file as well as a little documentation for the attribute itself.
This is all that is required for the attribute domain module (there is no separate .mod file, as there is for element domains).
Step 2 is to integrate the vocabulary module into your local copy of each of your document type shells. The pattern is the same for each shell.
For this tutorial, use a copy of the concept.dtd shell, as for the element domain specialization tutorial.
concept.dtd
and find the comment that reads "DOMAIN ATTRIBUTE DECLARATIONS". Following that comment, add this declaration: This pulls in the attribute domain module.
Find the comment that reads "DOMAIN ATTRIBUTE EXTENSIONS". Following that comment you should see a declaration for the %props-attribute-extensions;
parameter entity. It will probably be declared as an empty string.
%phase-of-moon-d-attribute;
parameter entity: This adds the @phase-of-moon
attribute to the %selection-atts;
parameter entity which is then included in the %univ-atts;
parameter entity, making this new attribute available on most elements (some elements, such as title, are not selection candidates).
Find the comment that reads "DOMAINS ATTRIBUTE OVERRIDE". Following that you should see the declaration of the text entity &included-domains;
and it should include references to a number of "x-d" text entities.
&phase-of-moon-d-att;
text entity: This formally declares your @props
attribute specialization so that DITA processors will know that @phase-of-moon
is in fact a conditional attribute and that they should filter on it as appropriate.
That's all there is to it. Now just repeat Step 2 for each document type shell you use and you're done.
Step 3 is to test your declarations to make sure they work. This is simply a matter of creating an XML document that uses your local document type shell as its DTD and verifying that the @phase-of-moon
attribute is now available on all elements that allow the selection attributes.
As for DTD-based attribute domains, an XSD attribute domain module consists of a single XSD document whose name is "attributeNameAttDomain.xsd", e.g., phase-of-moonAttDomain.xsd
.
<xs:attributeGroup>
declaration:@domains
attribute declaration. For example:This example is a topic shell integrates only the attribute domain. In practice you would normally include a number of element domains in addition to any attribute domains.
Goal: Declare an element domain vocabulary module that provides elements for identifying mentions of XML constructs: element types, attributes, text entities, parameter entities, and numeric character references.
In any XML vocabulary for documents there is a general class of elements whose purpose is to hold the names or labels of real things in order to indicate what type of thing the name or label is for. A typical example would be an element named "person" whose purpose is to hold the names of people. Likewise, an element named "color" would identify the names of colors. Given the string "Brown" an author would tag it either <person>Brown</person> to indicate a reference to a Mr or Ms Brown or <color>brown</color> to indicate a mention of the color brown. This markup then enables finding all mentions of people named "Brown" but not the color brown. It also enables applying different typographic effects to person names and color names, if necessary. They can also enable things like automatic indexing where the element type is the primary entry (e.g., "colors") and the element content is used for secondary entries (e.g., "colors, brown", "colors, blue").
In my practice as a markup designer I refer to these types of elements as "mention" elements because their primary purpose is to identify mentions of things. In DITA the base element type for mentions is <keyword>
. In technical documentation in particular mentions are very important because technical documentation is about real things that usually have specific component types or properties that need to be clearly identified, listed, searched on, and visually distinguished.
For Publishing applications, mentions are less important only because Publishing content tends to be less domain-specific and because the cost of adding mention markup is often not justified by the value, especially where content is not authored in XML originally. However, some Publishing content does benefit from specialized mention elements, especially reference content like travel and nature guides, where identifying things like place names or species names becomes important for both typography and search.
In DITA, mention elements can use the @keyref
attribute to both get their effective text and become navigation links to the things they mention. This allows you to have mentions of things directly connected to their formal definition (e.g., in reference topics). This makes mention elements very powerful and a place where a relatively small investment in specialization can provide huge value for authors.
After attribute specialization, creating specialized mention elements is probably the easiest specialization to do and provides immediate value to authors. Because you don't normally need to worry about the content model details, this is entirely an exercise in naming and copying.
As much of what I write about involves XML markup, I find it necessary to have elements that identify mentions of different XML components: tag names (element types), attribute names, parameter entities, text (general) entities, and numeric character references. These components need distinguishing typographic presentation but that presentation can vary in different contexts. For example, I have historically used the convention "attname=" for attributes, but the DITA TC resolved on the convention "@attname" for attributes in the course of the development of DITA 1.2. By having markup for attribute name mentions it is easy to modify the style sheets to change from "attname=" to "@attname".
For this tutorial you will define an element domain module that provides the element types <xmlelem>
(XML element), <xmlatt>
(XML attribute), <textent>
(general entity), <parment>
(parameter entity), and <numcharref>
(numeric character reference, e.g., "—").1
Element domains are typically either topic domains or map domains, meaning that they specialize either elements exclusively allowed within topics or exclusively within maps. However, if a domain only specializes elements that are common to maps and topics, then the domain may be used in both maps and topics. This includes domains that specialize from <text>
, <keyword>
, <term>
, or <ph>
and domains that specialize from <data>
. This allows you to use the same mention elements within maps (e.g., within titles defined in maps and within metadata) and within topics.
A DTD-syntax element domain vocabulary module consists of two files: one that declares the element types and one that defines parameter and text entities used to integrate the module into shell document types.
The element type declaration file has the extension ".mod", the entity declaration file has the extension ".ent". These two files together comprise the complete domain module.
For example, if your specializations require a specific formatting effect that is not the default DITA behavior for the base types, you must extend the output processors you use to provide the formatting effect. Typically this means creating extension XSLT scripts for use with the DITA Open Toolkit, but it can also mean extending built-in editor configurations and style sheets, or extending or customizing content management systems, Web sites, and so on, depending on the nature of the specialization.
The first step in specialization is designing your markup.
[Reference to more general discussion of markup analysis and design.] For this exercise, the element types to be declared are all specializations of <keyword>
, which is a pretty typical use case: you just need a few additional keyword-type elements to mark up mentions of things that are specific to your documentation.
<xmlelem>
<an-element>
. <xmlatt>
@an-attribute
. <textent>
&a-text-entity-name;
. (To be pedantic about it, the formatting specification actually produces an entity reference rather than a mention of an entity name, but Charles Goldfarb and I are probably the only people on the planet who would both notice the difference and care about the distinction. So we put the closing semicolon ("entity reference close") because that's how people expect something starting with an ampersand to look. Alternatively I could have used a different typographic convention [say small caps or something] and omitted the ampersand, but that would probably have just made it more confusing.) <parment>
%a-parameter-entity-name;
. (To be pedantic again, technically, the "%" is part of the parameter entity name and also serves as the entity reference open, so even if for text entities we didn't show the ampersand we would show the "%" for parameter entity references. Again, probably only Charles Goldfarb and I know or care about the difference. But I am compelled by years of deep standards work and an uncontrollable pedantic streak to mention that there is in fact a difference. Not that anyone cares. And yes, I was that kid who always said "technically, a peanut is not a nut, it's a legume.") <numcharref>
—
. The content should be the numeric value, preceded by an "x" for hex values. (I don't even have to say it do, I?) None of these elements allow any subelements, so their content models will all be just #PCDATA.
Domain modules must be given a short name that is used in the filenames, entity names, and in the @class
attributes. For this tutorial, the domain module name is "xml". In practice, you should give your domains more distinctive names so that there is minimal chance of name collisions with other domains. You see this with the DITA 1.2 Learning and Training specializations, where both the domains and the element types all start with "lc" (for "Learning Content"). This is essentially the same as having a namespace prefix on your names, but of course DITA 1.x cannot use namespaces, so you have to make do with the simple convention of distinguishing bits in your names.
The element type declarations go in a file called "modulenameDomain.xml".
The easiest way to do this is to copy an existing domain module file and use it as a template for creating your new one. However, for this tutorial I will describe the process as though you were creating the file from scratch.
These entities allow the element type to be used in content models via the parameter entity. Document type shells can then integrate further specializations of this element type by redeclaring the parameter entity to include specializations of the element, which then are automatically allowed wherever the base element type is allowed. You can also use the parameter entity in constraint modules to specifically allow only the element type in place of its base type.
Note that the content model for each element type must be at least as restrictive as the content model of the specialization base (in this case, <keyword>
, although we haven't declared that yet). Looking at the DITA language reference (or the declaration in commonElements.mod), we see that the content model for <keyword>
includes both #PCDATA as well as all other phrase-level elements. Since the XML component mentions don't need or want any subelements, we've reduced the content model down to just #PCDATA (just text), which is consistent with the content model of the <keyword>
element.
Note also that the content model and attribute lists are defined as parameter entities that are then used in the actual ELEMENT and ATTLIST declarations. This is a change from DITA 1.1 to DITA 1.2 made to enable overriding of individual element's content models and attribute lists through constraint modules.)In this case the only content model more restrictive than "(#PCDATA)*" is "EMPTY".)
Mistake to watch out for: Attributes with quoted default values quoted with the same quote character as the parameter entity text.
In parameter entity declarations you can use either single quotes or double quotes (" or ') to quote the entity value. Because attributes can have literal default values, you have to make sure the quotes used for the attribute value are different from the quotes used for the parameter entity text itself. This is most common with specializations of <data>
where you want to set the @name
attribute to a specific value (typically the tagname of the specialization).
For attribute declarations it's usually easiest to use single quotes so that attributes that specify literal default values can use double quotes, which is how most American's will declare them (and thus what you are most likely to copy from the base DITA declarations). Of course, if you're British you can swap that around.
@class
Attributes @class
attribute value: (The %global-atts;
parameter entity is defined in one of the base DITA module files.)
There are several reasons for keeping the @class
attribute declaration separate from the main element and attribute declaration. By putting all the class attribute declarations together in one place, it makes it easier to find the declarations and see what the specialization hierarchy is. It also makes it easier to re-use the element declarations by cut and paste. (This pattern becomes much more critical in XSD-based specialization, where the re-use of base element type declarations is by reference rather than via cut and paste.)
xmlDomain.mod
file should look this this: You should be seeing that this is a largely mechanical process that is mostly cutting and pasting of repeated declaration patterns. All of the actual thinking goes into the element type design. The declaration activity is purely mechanical.
In particular, having created the first declaration for <xmlelem>
, you copy it, paste it, and simply change "xmlelem" to the new element type name everywhere it occurs in that element's declarations.
The module entities file declares entities that are used within document type shell DTDs to integrate the module into the shell.
The module entities file is named "modulenameModule.ent".
There are two types of entities: type-specific parameter entities that integrate the module's element types into the appropriate content models (phrase, keyword, dl, etc.) and a domain usage declaration text entity that goes in the topic's or map's domain use declaration attribute to indicate what domains are being used in a given topic or map.
For the XML domain we only have element types specialized from <keyword>
, so we only need to declare one type-specific parameter entity. The parameter entity is named "modulename-d-basetype", so in this case, the entity will be named "xml-d-keyword".
xmlDomain.ent
" and put a descriptive header comment at the top: The " % " indicates a parameter entity and for the domains attribute contribution you want a text entity.
The keyword topic indicates that this is a topic domain rather than a map domain. The value "xml-d" is the name of this module, the "-d" indicating that it is a domain module and not a topic module.
Note however that this domain specializes exclusively from an element type allowed in both maps and topics (<keyword>
), so even though this is a topic domain it may be used with maps as well as topics.
With the xmlDomain.mod
and xmlDomain.ent
files you now have a complete module declaration set ready to be integrated with any shell DTDs that need to use it.
Integration is the process of modifying a document type shell DTD to include different modules. It is also a purely mechanical process.
Normal practice when using DITA should be that the first thing you do is make local copies of all the DITA-provided shell DTDs, even if you don't change them in any way. This prepares you for the inevitable time that you want to add or remove domains or otherwise configure or extend from the base DITA types.
Note that the order in which the .ent and .mod files are included into the shell DTD is very important. This is because in DTDs, the order of occurrence of parameter entity declarations is significant. In XML, the first declaration of a given entity name wins, so in order to override entities defined in other included files, you must declare that entity first. Thus you import the .ent files first, which provides the module-specific entity declarations that override the default definitions provided in the .mod files. Then you define the values of any configuration parameter entities, then you include the .mod files, which use the configuration parameter entities to define the effective values for content models and attribute lists.
Make a local copy of the appropriate document type shell DTD. The DITA-defined declarations include both all the DITA-defined modules as well as base shells for all of the DITA-defined top-level topic and map types: map, topic, ditabase, bookmap, concept, reference, task, glossentry, and so on. These shells are intended to be used as the starting point for creating local customized shells that reflect your local topic and domain requirements.
Copy the concept.dtd
file from the DITA distribution to some location outside the scope of the DITA Open Toolkit (e.g., c:\mystuff\dita\dtd\concept.dtd).
Modify the system identifier (the part in bold) to reflect the actual location of the shell DTD relative to the test document.
Remember that in XML all system identifiers are URIs, meaning you're specifying a URL, not a system-specific file path. So no backslashes if you're on Windows.
Validate this document. It should be valid at this point as you haven't modified the document type shell file in any way.
The system identifier needs to reflect the actual location of the xmlDomain.ent file. The example assumes that concept.dtd and xmlDomain.ent are in the same directory.
%keyword;
parameter entity declaration to include the %xml-d-keyword;
parameter entity: This declaration has the effect of including all the XML module's keyword-type elements wherever keyword is allowed in the base DITA-defined content models.
@domains
attribute with new domain @domains
attribute declaration. In concept.dtd, find the comment that says "DOMAINS ATTRIBUTE OVERRIDE". Update the &included-domains;
entity declaration to include the &xml-d-att;
text entity: Note that your &included-domains;
value may be different. The example shows the value used for the concept shell used by this tutorial's topics, which includes only the highlight and utility domains.
As for the .ent file, the actual system identifier needs to reflect the actual location of your version of xmlDomain.mod.
Using an XML editor and the test concept you created in step 2 above, first verify that the document is still valid, which verifies that you didn't break anything in doing the integration of concept.dtd. If that succeeds, then add a <conbody>
, a <p>
, and verify that you can now add any of the XML domain elements within a paragraph.
If this succeeds, you're done. You have successfully defined a new domain and integrated it into a shell document type. Now all you have to do is repeat (that is copy) the shell integrations into the other shells you'll be using the domain with.
The next step, if needed, is to add domain-specific functionality to your DITA processors. For the XML domain, that means updating output processors to create the formatting effects for the different XML component mention elements.
Per the documentation of the types in the XML domain, we need to create XSLT templates for each of the different mentions to produce the appropriate output effects.
Because the XML domain only defines specializations of <keyword>
, the XSLT required is quite simple and requires very little knowledge of XSLT itself.
The Open Toolkit is designed to allow extension of base functionality through "plugins". This allows you to create processing specific to your specialization and then easily deploy it without the need to directly modify the base Toolkit processes. All Toolkit transformation types should provide appropriate extension points for plugins, but not all do. However, both the HTML and PDF transformation types do provide the extension points you need to easily add processing for new specializations.
Create a directory to hold the plugin. As for document type plugins (see [reference to doctype plugin packaging section]), you should give your plugin a globally unique name, such as a Java-style package name like "org.example.xmldomain.html". The plugin name should reflect both the domain it supports and the transformation type it extends so it's clear what it's purpose is. As a matter of practice, I like to use the same engineering practice for Toolkit plugins that one normally uses for Java classes, namely keep them small and focused. Thus I typically have a separate plugin for each domain/transformation type pair. By naming them all with the same "package" prefix it is easy to see all the related plugins in a Toolkit's plugins
directory. It aslo makes it easy to do things like use Ant to manipulate a set of plugins (for example, to package them for distribution or automate deployment from your development environment to your test Toolkit environment).
Because the plugin will contain a normal XSLT module, you can implement and test the XSLT in isolation before you build and test your plugin. This is easiest in the context of an XSLT integrated development environment like OxygenXML or XML Spy, which handles the details of applying the transform to your test data.
As of version 1.5, the Open Toolkit requires the use of the Saxon XSLT engine, which means you can use XSLT 1 or XSLT 2. For this exercise the processing is so simple that it doesn't matter whether you use version 1 or 2. However, since the Toolkit allows XSLT 2 there's no reason not to declare your stylesheet as being an XSLT 2 style sheet.
For more complicated processing you will definitely want to use XSLT 2.
plugin.xml
. This file declares the name of the plugin and otherwise configures the plugin [reference to more general section on creating Toolkit plugins]. For this simple plugin, the plugin descriptor is:The part in bold is the plugin name. The name must be unique across all plugins installed in a given Toolkit, so it's important to give the plugin a globally unique name. Again, using Java-style package names ensures that.
The <require>
element indicates that this plugin requires the corresponding doctype plugin that contains the specialization module itself. The Toolkit's integration process checks this dependency and makes sure that all the necessary parts are available.
The <feature>
element says that the XSLT file xmlDomain2html.xsl
hooks into the extension point named "dita.xsl.xhtml" and is of type "file". This tells the Toolkit's integration process to add a reference to the file xmlDomain2html.xsl
at the point in the base HTML files where the extension point "dita.xsl.xhtml" is defined. Note that you don't care where that extension point is defined, you only care about the name. Any number of plugins can extend that same extension point.
@id
value. This will cause confusing errors in the Toolkit processing that can be hard to diagnose. The different element types in the XML domain require different "decorations" on output to visually distinguish them. This could be done via CSS if we put appropriate @class
values on the HTML output or it can be done here using literal text. The advantage of using literal text is that it will work even when the CSS isn't present or supported by the browser. The advantage of using CSS is that you can change look without regenerating the HTML. For this tutorial the point is to learn to do some stuff with XSLT so we are going to use literal text.
The @priority
attribute ensures that this template will be used instead of any imported template. The <xsl:text>
elements hold the generated text. This could be replaced with other HTML elements if you wanted some more complicated effect, like blue brackets or a superscript or something.
Note the leading and trailing spaces around the class attribute value (" xml-d/xmlelem "). It is very important to include those spaces so that you only match on the specific element types you want and not on types whose name happens to begin with the same letters.
The template uses the <code>
element as the main HTML element for the XML components as it seems to be the closest match for the semantic of these keywords and we want the default HTML behavior of putting the text into a monospaced font.
<xmlelem>
element, we need to generate the bounding angle brackets. Using the above model template as a template, create this template following the include statement in the xmlDomain2HTML.xsl file: The other templates are just like this one, differing only in the text before and text after they produce. Simply cut and paste the template for <xmlelem>
and modify it as needed for each of the other types.
That's all there is to it, at least for these relatively simple keyword-based specializations. A specialization of something more sophisticated, like <simple-table>
or <dl>
could, of course, require more work. But just adding a few <ph>
or <keyword>
specializations and styling them is simple enough that anyone should be able to do it if they need to.
For XSL-FO output, the stylesheet would be almost the same, except that you would be generating <fo:inline>
elements instead of HTML <code>
or
elements.
To test the stylesheet, deploy the plugin to your Toolkit and run the Toolkit's HTML transformation type against the test topic you created in Step 2
If you have an XSLT development environment such as OxygenXML or XMLSpy, you can also run the stylesheet directly against a topic—you won't get any processing that requires resolution of conrefs or generation of links but you'll be able to validate that the XSLT is producing the correct XSLT markup.
plugins
directory. Now run the Toolkit's HTML transformation type against your test topic as you normally would. You should see the new formatting for the various element types.
An XSD element domain module consists of a single XSD document that contains all the declarations for the domain.
@class
attribute for the element type. The individual components can go in any order but it makes sense to put the <xs:element>
declaration first as it contains the documentation for the element type.
This group can go at the top or bottom of the XSD document. I prefer to put it at the top where it's easy to find.
xmlDomain.xsd
with this content:<xmlelem>
element type and paste them in, one copy for each of the five element types. To test the module in isolation, create a topic document type shell XSD file in a convenient directory relative to where you have saved the domain's XSD file, e.g., in the directory above it or in one nearby. This lets you create relative URLs from the shell XSD to the module so you don't have to set up an entity resolution catalog just to test the module. For example, you can just copy the topic.xsd file from the standard DITA schema files.
xmlDomain.xsd
module at the top of the schema documentChange the value of the @schemaLocation
attribute to reflect the real relative location of the xmlDomain.xsd
file. Remember that schema locations are URLs, not filenames, so don't use Windows paths (no backslashes) if you are on Windows.
<xs:redefine>
for the common elements module, update the entry for <keyword>
to include a reference to the xml-d-keyword group:You should now be able to validate the document or just apply the Toolkit to it, which will have the effect of validating it.
xmlDomain.xsd
file. This file should go in the same directory as the module file. The content should be like this:You would need to adjust your version to replace the parts shown in bold with your own value, which needs to be globally unique (e.g., an appropriate Internet domain name).
To integrate this module with the Open Toolkit, you should package it as a plugin. See Packaging Document Type Shells and Vocabulary Modules as Toolkit Plugins.
Goal: Define a new structural specialization of the base <topic>
element type that supports the creation of FAQ (frequently asked question) topics.
Topic specialization generally requires defining a number of new element types at different levels in the element hierarchy, as opposed to domain specialization, which can be as a simple as defining a few new phrase-level element types.
The main reason to create structural specializations is to provide more-specific markup that reflects your local business requirements or the nature of your information. For most technical documentation applications, the value in specializing reference and task topic types is usually pretty obvious, because these are information types that work best when they directly reflect the details of the things being documented, specific editorial rules for how tasks should be structured, or the needs of other information systems that consume reference and task information (such as interactive task support systems).
For reference information, it is usually useful to define specialized reference topic types that directly reflect the objects being documented. For example, if you're documenting sprockets it probably makes sense to have a specialization of "reference" called "sprocket" or "sprocket-definition" that has specialized <section>
elements that reflect the specific sets of properties or characteristics that sprockets have (tooth properties, shaft properties, material information, manufacturing notes, etc.).
For tasks, you may have specific editorial rules for how tasks should be constructed, rules that are more constraining than the base DITA rules for tasks (which are already pretty constraining). 1
Because conceptual information is, by its nature, more generic, there is usually less need, or less obvious need, to specialize from <concept>
. For example, the topics for this tutorial are all generic concepts (although they use a specialized domain for identifying mentions of XML constructs). However, there are still many good reasons to specialize concept topic types.
One strong reason to specialize from <concept>
is to create element types that reflect specific levels in a governing organizational taxonomy where the taxonomy is an integral and invariant aspect of the information. Another reason would be to provide different more-specific concept element types that are familiar to your authors or that reflect a particular editorial style for presenting conceptual information. For example, in the case of this tutorial, the FAQ topic type is based on concept but has been specialized to provide a clear "short answer/long answer" distinction, as well as disallow base types that we don't want to allow in FAQ topics (abstract in this case). In addition, having a specialized type for FAQ lets us apply FAQ-specific styling to the topics for presentation.
Note that specializing <concept>
to reflect specific hierarchical levels within a traditional document, e.g., chapter, section, subsection, is normally not a good idea, because it binds a given topic to a specific level, making it harder to re-use or re-organize the topic in other contexts. Rather, if you want markup that directly reflects specific hierarchical levels, you should use map specializations, such as the standard <bookmap>
or the DITA for Publishers publication map domain.
The only exception to this rule that I can think of is when you have an editorial policy that requires title-only topics (that is, topics with no body) to satisfy specific levels in a governing hierarchy (that is, a governing, invariant, taxonomy). In that case, it can make sense to define specializations of <concept>
or <topic>
whose names reflect the taxonomy or hierarchy level and that don't allow either <body>
or nested topics (meaning that they only serve to be used from maps within a hierarchy of topic references). However, the value of this type of topic is dubious given that <topichead>
elements within a map are sufficient to establish the hierarchy and provide the necessary titles.2
Note that you are not required to specialize from <concept>
, <task>
, or <reference>
. You can specialize directly from <topic>
or from a more-specialized topic type. The concept/task/reference model makes sense in the context of technical documentation where it reflects a well-established writing practice. But it is not always sensible for other uses of DITA. For example, in the context of Publishing, most content either does not naturally map to one of those three types or those distinctions simply aren't relevant (e.g., within a novel). In that case it can make sense to specialize directly from <topic>
. For example, the DITA for Publishers vocabulary includes the topic types <article>
, <chapter>
, <part>
, <subsection>
, and <sidebar>
, all specialized directly from <topic>
, because they are intended to represent content at its most generic. The topic types simply provide a more obvious mapping to the basic document components Publishers would expect to see in any Publishing XML application.
<task>
. A DTD-syntax topic specialization module consists of two files: a .ent file that defines entities used to integrate the module into document type shell DTDs, and a .mod file that declares the element types. Starting with DITA 1.2 structural modules should provide @domains
attribute declarations.
For XSD-based structural modules there are two XSD documents: a *Grp.xsd that defines groups used to integrate the module into document type shell XSDs, and a *Mod.xsd that declares the element types and attributes for the module.
For example, if your specializations require a specific formatting effect that is not the default DITA behavior for the base types, you must extend the output processors you use to provide the formatting effect. Typically this means creating extension XSLT scripts for use with the DITA Open Toolkit, but it can also mean extending built-in editor configurations and style sheets, or extending or customizing content management systems, Web sites, and so on, depending on the nature of the specialization.
Of course, to answer these questions, you have to first understand the requirements, both for the information content and the information presentation and processing.
For this tutorial, our task is to create a specialization of <concept>
that supports the requirements of FAQ information, that is, questions and answers.
I chose FAQs as the subject of the tutorial because they are both familiar to most Web users (and now even non-Web users), they are relatively simple (at least on their face) but not so trivial as to be boring, and they have some potential sophistications that could make for interesting exploration beyond the immediate task of "what are the mechanics of definining and implementing a new topic type?" In addition, there are any number of useful and reasonable ways that FAQs could be constructed using DITA and what is presented in this tutorial is only one, and not necessarily the best one.
For this tutorial I have decided that the each question should be a separate topic, rather than having one topic that contains multiple question/answer pairs. This design follows the general understanding that I've arrived at that making <topic>
the primary unit of organization and granularity works well, even if it leads to topics that some people might initially or intuitively think were too small. But I wouldn't go to the mat to defend this design decision and won't claim it's necessarily the best. It has a logic I can defend but that's as far as I'll go.
As you work through the tutorial, take the time to ask yourself how you would have done it and why a different way would or wouldn't be better for some reason. This type of analytical thought is all part of understanding your requirements and mapping those requirements to implementations in order to ensure you have the most appropriate solution.
For the purposes of this tutorial, let us define an FAQ as a set of one or more question and answer pairs, where the question is a relatively short statement and the answer may be as short or long as needed. We would like the markup to reflect this essential nature, that is, there should be something named something like "question" and something named something like "answer". There are no particular requirements for the contents of answers themselves. We would like to be able to get a presentation where the question and answer are clearly identified, e.g., "Q. Question statement", "A. Answer response". Default topic presentation would not be sufficient in this case.
Note that these requirements are pretty simple. In any sort of engineering activity, it is best to start off as simply as you can and use iterative refinement to satisfy new requirements as you discover them. In the world of agile methods this is known as "the simplest thing that could possibly work".
This approach does several things: it lets you get something working quickly, it gives you immediate practical experience that will feed back into the design and implementation quickly, and it avoids designing and implementing things that you don't actually need. When designing XML markup it is quite easy to over-design and build complex markup structures that nobody actually wants or needs or, perhaps, can understand how to use. I've certainly done my share of this in the past. I now find it much more effective to start small and build up as needed. Often this refinement process all happens over the course of a few hours as I implement a new document type or specialization and start testing it with real data, sometimes it happens over weeks or months as the new markup design is tested by its target users. In any case, for this tutorial, we will start small and, once we have something working that minimally meets our requirements, we can start thinking about other things we might need.
Another characteristic of agile development methods is "test-driven development", that is, the use of test cases to drive the implementation, rather than implementing first and testing later. The basic idea is that you write the test case first, which will of course initially fail (because there's no code yet) and then you do the implementation until the test case passes, at which point you know you're done. The test cases reflect the requirements as you understand them at the time you write the test case (and if the requirements change, you update the test case to reflect your new understanding).
For markup design, this translates into creating document instances and then implementing the DTD or schema that will validate those instances. When the instances are valid, you know you're done (as long as your instances reflect all the important cases the schema needs to support). This is as opposed to simply going from requirements straight to markup declarations and then only creating instances after the fact, which is the way we had to do it back in SGML days. One of the nice things about XML is that you can have documents with no document type, so you can start with instances and add DTDs or schemas later.
<title>
to <faq-question-statement>
to make that clear: In this case we don't have any particular requirements for the topic body content so we could leave <body>
unspecialized, but since the body will be the FAQ answer, it makes sense to rename <body>
to <faq-answer>
.
Note that just "answer" is probably too generic—one challenge with DITA 1.x is that because you cannot use namespaces, all element types, including all specialized element types, must be unique. While you can't guarantee that your specialized types won't conflict with somebody else's, you should try to use names that are reasonably specific to your stuff. This can sometimes lead to names that are longer or more cumbersome than they would need to be if we could use namespaces in DITA 1.x. A good example is the element types defined by the DITA 1.2 Learning and Training vocabulary modules, which all start with "lc" (for "learning content"), which functions as a sort of "namespace prefix" and helps ensure that no other vocabularies will have names that collide with the Learning and Training types.
This design should be sufficient to get us going. Note that we are deferring all issues of how to organize the FAQ questions into FAQs using maps, where we know we already have everything we need to create sets of questions and to do things like group questions into titled groups.
The topic declarations go in a file called "modulename.mod", where "modulename" is usually the same as the tagname of the specialized topic element, this case ffaq-question.mod
.
To get started, the easiest thing to do is copy an existing topic module, either the one for the base you're specializing from, or one that is similar to the specialization you want to create.
In your working area create a directory named "faq-question" and under that create the directory dtd
. This will hold all the DTD-related materials for the topic specialization. You should create this directory outside the scope of the DITA Open Toolkit. (In the tutorial materials there are two directories, faq-question-v1
and faq-question
. The faq-question-v1
directory contains the first iteration of the module, the faq-question
directory contains the final, refined version.)
Note that the SYSTEM ID of the DTD is a local, relative URL. This is to keep things simple for testing purposes and avoid the added complexity of mapping PUBLIC or SYSTEM IDs through catalogs. Later we will set up the necessary catalog entries so documents can use an absolute URI for the faq-question shell DTD.
Open this document in an XML-aware editor. It should either fail to open with a "can't find the DTD" message or open but say that it can't be validated. Now our goal is to make this file validate.
In the base DITA distribution, find the file "concept.dtd
" and copy it into the faq-question/dtd
directory and rename it "faq-question.dtd
" (in the sample materials this file is named faq-question-v1.dtd
).
%concept-info-types;
and rename it to %faq-question-info-types;
. Set its replacement text to "no-topic-nesting", rather than "%info-types;". <no-topic-nesting>
element is one of the DITA "specialization" element types that exist to work around limitations in DTD syntax. In particular, if you have a content model declared like so: %some-parameter-entity;
to an empty string, because the resolved result would be: The solution is to define an empty element type that acts as a placeholder, thus <no-topic-nesting>
.
Try validating or opening the test document again. This time you should not get a "DTD not found" error but you should get "element type 'faq-question' not declared" sort of errors, indicating that it found the DTD but not the declarations for the FAQ-specific element types, which of course we haven't created yet. But we're making progress.
Find the file "concept.mod
" in the regular DITA DTD distribution and copy it to "faq-question.mod
" in your faq-questions/dtd
directory.
faq-question.dtd
file (the document type shell DTD) and integrate the module as follows: %concept-typemod;
entity declaration. Note also that I didn't bother to define either a public identifer or a URN for the %faq-question-typemod;
parameter entity. This is to keep things simple, as with our test document. Later, once we've got everything working, we can replace the relative URL with a URN and set up the necessary catalog mappings.
Trying validating your test document again. Now you should get errors to the effect that the "concept" element type is declared multiple times, as well as the same messages about the FAQ-specific element types not being declared. This indicates that we've got the module integrated with the shell correctly.
<faq-question>
as a specialization of <concept>
<faq-question-statement>
as a specialization of <title>
<faq-answer>
as a specialization of <conbody>
<concept>
element type. Change "concept" to "faq-question" in the element and attribute list declarations. <faq-question>
, change "%title;" to "%faq-question-statement;" and "%conbody;" to "%faq-answer;". <conbody>
element type. Change "conbody" to "faq-answer" in the element and attribute list declarations. <title>
element. Copy this declaration and paste it into faq-question.mod. Change "title" to "faq-question-statement" in the element and attribute list declarations. If you want, validate the test document again. You should now only get "parameter entity 'question-statement' was referenced but not declared" sorts of errors (and maybe some errors about the declaration of <faq-question>
itself). This indicates we've declared the necessary element types, at least minimally, but we need to declare the parameter entities as well.
In faq-question.mod
, find the comment labeled "ELEMENT NAME ENTITIES".
These parameter entities allow document type shell DTDs to extend the base content models that reference these element types by redeclaring these parameter entities to either include additional element types (e.g., specializations of the parameter entity's associated element type) or replace the original type with new types.
%faq-question-statement;
like so: Validate the test document again. The test document should validate.
If it does validate, then we know that the declarations are correct in the module, at least as far allowing our new element types go, and that the document type shell DTD is hooked up correctly.
At this point another test would be to see if our requirement that no nested topics, and in particular, no nested FAQ questions are allowed is satisfied. Only the <no-topic-nesting>
element should be allowed.
Note that if you wanted to be really forceful about the requirement for no topic nesting, you could simply modify the content model of <faq-question>
to remove the reference to %faq-question-info-types;
entirely. That would be a statement that nested topics should never be allowed, while the <no-topic-nesting>
element simply says "for this configuration, I don't want to allow topics". That is, the content model of <faq-question>
as it is currently defined would allow users to allow nested topics via configuration of a document type shell DTD and would allow specializers to allow nested topics in a specialization of <faq-question>
. If it was essential to the semantic of FAQ questions that nested topics never be allowed, it would be better to remove the reference to %info-types;
. But that would probably be too constraining in this case. In general, when designing an element type that is general enough that it is likely to itself be a base for specialization, you should err on the side of laxity and let configurators and specializers add in the constraints they want.
While the declarations are now sufficient to allow us to create FAQ question instances, it's not yet complete because we haven't declared the DITA @class
attributes that define the specialization hierarchies for the new specialized element types. This means that if we try to process our test document with the DITA Open Toolkit we won't get any output because the toolkit will not know that <faq-question>
is actually a specialization of <concept>
.
@class
Attributes In the faq-question.mod
file, find the comment with the text "SPECIALIZATION ATTRIBUTE DECLARATIONS".
<concept>
element's declaration, change the element type name to "faq-question". To the @class
attribute value, add " faq-question/faq-question ". <conbody>
element's declaration, change the element type name to "faq-answer" and add " faq-question/faq-answer " to the end of the @class
attribute value. @class
attribute value to "- topic/title faq-question/faq-question-statement " (remember the trailing space character at the end of the @class
value). Validate the test document to check that you didn't introduce any syntax errors. You can also use your editor to test that the elements now allow @class
attributes with the expected default values.
If you are using an editor like OxygenXML, as soon as you add the @class
attributes to the module it should recognize the document as a DITA topic and automatically format it appropriately in the tags-off mode (Author mode in OxygenXML).
The @class
attribute is sufficient for DITA processors to recoganize the elements as DITA elements, but the declaration is not quite complete. We still need to set up the @domains
attribute for this specialization.
@domains
Attribute Contribution Entity (.ent File) Both structural and domain modules require a .ent file in addition to the .mod file. For a structural domain (map or topic type) the .ent file simply defines the @domains
attribute contribution for the topic type.
Create a file named faq-question.ent
in the faq-question/dtd
directory. Add a descriptive comment to the top of it indicating the name of the module and your ownership.
The value of the entity is the list of the ancestor topic types for the new topic type, "topic concept" in this case, followed by the name of the topic type defined by the module itself. If the faq-question topic type required any domains it would list them following its own name.
faq-question.dtd
file and find the comment "TOPIC ENTITY DECLARATIONS" and insert this parameter entity declaration and reference after the comment (if you don't find this comment, find the comment "DOMAIN ENTITY DECLARATIONS" and insert the following declaration before it):Note that the publid ID is just the filename. This is just for testing purposes. For production use you would use an appropriate URN or public ID.
&included-domains;
text entity and add a reference to the entity &faq-question-att;
to it. It should look like this:Validate the test document again. It should still be valid. Check the root <faq-question>
element to verify that it has a @domains
attribute and that its value includes the "(topic concept faq-question)" component in addition to those for the highlight and utility domains.
At this point the new topic module is complete. All that remains is to assign appropriate public identifiers to the .mod, .ent, and .dtd files and package it as an Open Toolkit plugin so that the module can be used for production.
faq-question
directory create a file named plugin.xml
with this content:faq-question
directory create a file named catalog.xml
with this content:faq-question/dtd
directory create a file named catalog.xml
with this content:faq-question/dtd/faq-question.dtd
and update the entity declarations for the .ent and .mod files to use the URNs defined in the catalog file:This is an easy mistake to make and a hard one to catch because the URNs are so similar. One symptom of this is that the shell that's in the same directory as the modules works, because it's system IDs are resolvable, but a different shell that uses the same modules fails because the URNs are wrong and the system IDs are not resolvable. That is one reason to make sure that system IDs are not resolvable--it helps reveal this sort of error.
Making this mistake can lead to baffling validation errors from XML parsers, such as duplicate element type declarations or other DTD syntax errors. Whenever you get those the first thing to check is the public IDs of the module entity declarations in the shell document types.
faq-question-test-02.xml
, and modify its DOCTYPE declaration so it uses the URN of the .dtd file and uses an bogus system identifier (so the parser has to use the public ID to resolve the reference to the DTD file1):Edit this document: it should not validate as you haven't deployed the plugin to your Open Toolkit yet.
faq-question
directory to the plugins
directory of your Open Toolkit. integrator.xml
Ant task to integrate the plugin:This has the effect of adding a reference to the faq-question/catalog.xml
file into the Toolkit's master entity resolution catalog, catalog-dita.xml
.
faq-question-test-02.xml
document validates. If you are using OxygenXML and you deployed the plugin to Oxygen's Toolkit then you should just need perform the "Reset cache and validate" action. With other editors or validators you may need to explicitly configure the use of the catalog-dita.xml
catalog.
Your new topic type is now ready to use.
For many topic specializations you won't require any change to the base Open Toolkit processing because you're using the specialization primarily to support authoring requirements and imposing editorial rules or to define specific reference structures or task structures that don't require any special processing. However, sometimes you want or need different or additional functionality, in which case you have to extend the Toolkit (or whatever tools you're using to process your DITA-based information).
Which of these you use depends on what you need to accomplish for your vocabulary module.
If you are adding support for new element types or attributes, then you should use extension, since the processing for your new types cannot (or rather, should not) interfere with any base processing. For most vocabulary modules you will use extension, as is the case for the FAQ question topic type module.
If you need to implement processing that is specific to a particular publication type, user group within a larger organization, or otherwise limited to specific cases, then you should normally use overrides so you do not modify the the base processing for users of the base transformation type. For example, you might have different customizations of the PDF processor for different product groups within an enterprise. These customizations should be overrides not extensions.
If you need to implement processing that modifies the default processing but that should be used universally within a given organization, then you should use extensions. For example, you might have a corporate standard for specific HTML elements that should be reflected in any HTML output. In that case it would be appropriate to define an extension plugin that overrides the base processing.
Also, for HTML output, you can customize some presentation aspects through the use of custom CSS style sheets without the need to modify the HTML generation itself.
See Configuring and Extending the DITA Open Toolkit for a more complete discussion of extending and overriding Toolkit processing.
For the purposes of this tutorial we will extend the HTML generation to reflect the formatting specifications for FAQ Question.
There are several ways to achieve this sort of effect, including defining default values for the @output-class
attribute in the DTDs (which would then let you style the HTML using a CSS style sheet without the need for a separate transform). However, for the purposes of this tutorial we will create a transform if for no other reason than to see how it's done.
As for creation of the DTDs themselves, the process of creating a specialization-specific XSLT script can be fairly mechanical and not require any great depth of XSLT knowledge, especially if all you're doing is tweaking the HTML output.
plugin.xml
) and the XSLT modules that implement your custom processing. Outside the toolkit, create the directory org.example.faq-question.html
to contain your plugin. I use the convention of "moduleName.transtype" for the plugin name, thus "faq-question.html" for the HTML plugin, "faq-question.fo" for the PDF plugin, etc.
org.example.faq-question.html
directory create the file plugin.xml
with this content:This descriptor names the plugin ("org.example.faq-question.html"), indicates that it is dependent on the FAQ question document type plugin, and binds the plugin's XSLT module to the extension point "dita.xsl.xhtml", which is defined in the base DITA-to-HTML transformation type.
The <require>
element is not strictly required but it makes it clearer that this module supports the FAQ question vocabulary module and is not, for example, a more general extension or override. Note also that the document type plugin does not state a dependency on the HTML plugin. This is because there may be users who want to use the vocabulary but not your particular implementation of the processing for it. Thus you should always have separate plugins for the vocabulary modules and their supporting processing so that users of your vocabulary modules can easily substitute their own processing if they want to.
xsl
within the org.example.faq-question.html
directory. In the xsl
directory create the file faq-question2html.xsl
with this content: At the moment this stylesheet does nothing.
You can test the plugin by deploying it to your Toolkit and running the HTML transformation type against one of the FAQ question test documents. The processing should produce completely generic output but should not fail with any XSLT-related errors.
Note that this XSLT module is an XSLT 2 module. As of version 1.4.3 of the Open Toolkit, the Toolkit uses the Saxon XSLT engine exclusively. Saxon implements XSLT 2 so it is safe to use XSLT 2 with the Toolkit. It doesn't matter that the base transformation modules are XSLT 1 modules.
For the FAQ Question specialization, we need to modify the presentation of <faq-question-statement>
and <faq-answer>
. We don't need to do anything special for <faq-question>
because we just want the normal topic processing. Thus we need match templates for <faq-question-statement>
and <faq-question>
. In addition, we will create a no-op template for <faq-question>
just to demonstrate how to have a custom template and still use the base Toolkit-supplied processing, even though we don't need it, at least based on our current formatting specifications.
Note the space characters before and after the module/typename pair.
This pattern for match expressions ensures that elements are always processed in terms of their specialization hierarchy and not their local tagnames. You can, of course, combine the "*[...]" matches together to match on elements in context, just as you would if you were using tagnames in the match statement.
In the Open Toolkit distribution, find the file dita2htmlImpl.xsl
. It should be in the xsl/xslhtml
directory.
<xsl:template>
element and paste it into the template for <faq-question-statement>
in faq-question2html.xsl: <faq-answer>
we want the processing applied to concept/conbody. However, if you search for " concept/conbody " you won't find anything, which means that there is no special processing for <conbody>
. That means you must search for the next level up the specialization hierarchy, namely " topic/body ". Copy the contents of that template into the template for <faq-answer>
: <faq-question>
, add a next-match statement to the template body: The next-match simply says "take the context node (that is, the <faq-question>
element) and apply whatever template would have matched if this template hadn't matched. This has the effect of just applying the default formatting for concept topics but gives us a ready-made place to add new or different processing should we need it. It also demonstrates the use of next-match.
If you redeploy the plugin and apply the Toolkit to your FAQ topics, you should again get the normal output. You can verify that you are really using your stylesheet by either introducing a syntax error and verifying that the processing fails, or by adding something to a template that will have a visual effect in the output.
Once you have verified that everything is working as expected, you are ready to start modifying the processing.
The
with the @class
value isn't strictly necessary but it provides a handy hook for using CSS styles to further control the presentation of the question.
For the question answer, the solution is not quite so obvious. In order to produce the answer with the initial "A. " text such that it is immediately followed by the text of the first paragraph requires processing the first child paragraph of <faq-answer>
specially and then processing the rest of the content. However, the base template provides processing for elements that would be presented before the first paragraph, such as the abstract and the short description.
This presents a dilemma and indicates that we haven't fully thought through the markup design or the presentation design. Clearly we were thinking of questions as just being a title with the question and answers as paragraphs. But DITA topics can be more sophisticated. The upshot is that we have to account for these elements in some way.
One way would be to simply eliminate them from the allowed content of <faq-question>
. That would certainly simplify the problem but might make our FAQ question topics too simple. For example, there might be systems that depend on short descriptions or abstracts for some cool functionality.
The better thing would be to provide FAQ-specific processing for these elements that ensures the correct presentation. In addition, there might be ways to integrate these elements with the FAQ to make them more useful.
In particular, it probably makes sense to refine the model for <faq-question>
to require<shortdesc>
to be the first paragraph of the answer, with the body as the rest of the answer. This would enable, for example, an FAQ presentation that shows just the question and short description with the topic body hidden until requested.
This point that we've come to is one of the reasons that it's so important to test new markup designs in the context of realistic processing as well as in the context of authoring. As you design new markup you should expect to go through several iterations of design/implement/rework. One advantage of using DITA as a base is that it makes it fairly inexpensive to do this iterative development because you can quickly extend the base functionality rather than having to first implement a large base of processing just to get to a point where you can see some output.
At this point, we put our XSLT work on hold for a moment and go back to the DTD declarations to refine the markup rules.
As a result of our initial output processing implementation effort, we've realized that we should be requiring the <shortdesc>
element to act as the required first paragraph of a potentially longer answer. We will also disallow the <abstract>
element as it's not really relevant to what we're trying to do.
This change also requires us to rethink our element type names. If the short description is going to act as the first paragraph of the answer, then "shortdesc" is probably not the best name. By the same token, the name "faq-answer" is probably not the best name for the topic body. Better names are probably "faq-short-answer" for the short description and "faq-answer-details" for the topic body.
Verify that the document is no longer valid.
<faq-question>
as follows: %faq-answer;
parameter entity and change it's name and value to "faq-answer-details" <faq-answer-details>
. <faq-answer>
and change the element type name to "faq-answer-details". <shortdesc>
. Copy it and paste it after the element type and attribute declaration for <faq-question>
. (I like to list element type declarations more or less in the order they occur in the document's structural hierarchy.) @class
attribute declarations at the end of the .mod file and edit them as follows: <faq-answer>
, change both occurrences of "faq-answer" to "faq-answer-details". <faq-answer-details>
and change "faq-answer-details" to "faq-short-answer". @class
attribute declaration for what is now <faq-short-answer>
, change "topic/body" to "topic/shortdesc". Change " concept/conbody " to "concept/shortdesc" (all the levels of the specialization hierarchy must be accounted for in the @class
attributes even if the element type name is not changed). Redeploy the faq-question Toolkit plugin and try validating the updated test document. It should validate.
Having reworked the markup design to provide a short answer and answer details, pop back up to step 4-4 and continue implementing the XSLT processing.
<faq-answer>
to match on "faq-answer-details" instead of "faq-answer": <abstract>
from the content model for <faq-question>
, you can delete the apply-templates instruction that matches on "topic/abstract". Having the instruction there wouldn't hurt anything (there could never be an abstract to match on), but it might confuse somebody who knows the content model for <faq-question>
. However, since somebody who knows the content model for topic might expect there to be a match on <abstract>
, it's probably a good idea to provide a comment to the effect that <faq-question>
doesn't allow <abstract>
. <div>
with a @class
attribute value of "faq-answer-details" around the last "apply-templates" call: This <div>
clearly separates the answer details from the short answer and the @class
value provides a hook that can be used in CSS styles or JavaScript to add additional formatting or behavior to the answer details.
Without having tested it yet, the template now looks like it should be right: it's not getting the abstract, it is processing the short description (our new <faq-short-answer>
) and the rest of the processing should be appropriate.
Redeploy the Toolkit plugin and run the transform against your sample FAQ question. You should get the same output you got before since all we really did was change the template match value and cut away stuff we didn't need.
The next step in the implementation is to handle the <faq-short-answer>
element.
The formatting specification says to output "A. " followed by the the answer text. To do this we need a template that matches on " faq-question/faq-short-answer ". Note that even though <faq-short-answer>
is specialized from <shortdesc>
, it would not make sense to simply override the processing for <shortdesc>
, as that would change the formatting for all other topic types.
@mode
attribute with the value "outofline". This is necessary because the short description is being processed out of its normal source order, that is from within the processing for the topic body (to which shortdesc is a sibling) rather than from with the processing of topic (of which it is a child). The base DITA style sheets have been set up to handle this in a generic way using the mode "outofline" for all templates that handle elements processed out of their normal document order. You can see that the mode is used on the apply templates in the template for <faq-question>
: If you didn't specify the corresponding mode on the match template for <faq-short-answer>
, you would get the answer text twice, once from base outofline mode template that matches on " topic/shortdesc " and once for the default mode template that matches on " faq-question/faq-short-answer ".
This template will put out "A. " before the short description. The @class
values are there to support styling the result using CSS.
Redeploy the Toolkit plugin again and run the sample FAQ answer through the Toolkit and inspect the results. You should now see the "A. " before the short answer text (the first paragraph of the result). This means that the XSLT is done. The next step is to create or update the applicable CSS style sheet to add the appropriate styling to the HTML pages.
The DITA Open Toolkit provides a general framework for using CSS style sheets with the HTML generated from topics. It provides the "commonltr.css" and "commonrtl.css" styles, which are used by default for all generated HTML. You can also supply your own custom CSS and specify it as part of the HTML generation process.
In the tutorial materials there is "faq-question_html.css" in the "html/css" directory. For your own environment you can create a new CSS style sheet. You should store and manage it outside the scope of the DITA Open Toolkit. The Toolkit processing can automatically copy it to the output location for you. Or, if you are publishing your topics to a larger Web site, the CSS styles may be managed separately, in which case you just specify the name and path of the CSS but turn off the copying. This is all explained reasonably well in the Open Toolkit documentation.
To use your custom CSS stylesheet you supply the full path of the CSS file, wherever you've put it, with the "/css" parameter of the HTML transformation type and specify "/csscopy" as "yes".
You can test this by either re-running the toolkit or, once you've run it once so that the CSS stylesheet is referenced from the HTML, you can just manually copy the changed CSS to the output directory and see how it looks. You might also find it easiest to develop the CSS style in place and then once you're happy with the result, copy it back to the original location. Just be careful not to run the toolkit in the meantime or you'll overwrite your changes (doh!).
Note that the style is using the @class
value on the <div>
that you put around the short answer.
Test your styles until you're satisfied with the visual result. If you want to get really sophisticated, you can add JavaScript to show or hide the answer details, but that's beyond the scope of this tutorial.
That's it, you're done.
faq-question/xsd
in your working area. concept.xsd
, conceptGrp.xsd
, and conceptMod.xsd
from the base DITA schema set to the faq-question/xsd
directory. faq-question.xsd
, faq-questionGrp.xsd
, and faq-questionMod.xsd
. catalog.xml
file from the dtd
directory into the xsd
directory. xsd/catalog.xml
and change it as follows: <public>
elements and change "public" to "uri" and the "publicId" attributes to "name". This is necessary because the Apache Xerces parser incorrectly uses public ID resolution to resolve XSD schema locations. It should use URI entries (because schema locations are URIs not entity references and therefore should be resolved through URI entries in catalogs). Other systems that use the catalog will likely do the correct thing and use URI entries to resolve schema locations. So you need both forms of entry.
If you want to cover all bases you can make yet another copy of the entries and change <public>
to <system>
and "publicId" to "systemId". That covers the case where a processor treats a schema location as a system ID rather than a URI. That would also be wrong but some systems may do it.
faq-question/catalog.xml
file, copy the <nextCatalog>
element and change "dtd" to "xsd" in the new copy, resulting in this catalog file:<faq-question>
element:Where the value of the @xsi:noNamespaceSchemaLocation
reflects the appropriate relative URL to the faq-question.xsd
file.
The document should not be valid at this point because the faq-question.xsd
file is just an unmodified copy of the concept XSD shell.
faq-question.xsd
and modify it as follows: faq-questionGrp.xsd
file:<xs:redefine>
element, delete all the groups except the groups for "ph" and "fig":@domains
attribute to reflect the domains and topic types actually used:At this point, the test document is still not valid. When you validate it you should see messages about the schema containing two occurrences of global components (concept, conbody, etc.), since the faq-questionMod.xsd file is still just a copy of the conceptMod.xsd file.
faq-questionGrp.xsd
and modify it as follows: Validate the test document again. This time you should get messages about being unable to resolve the references to the FAQ-specific element types referenced from the groups you just created.
faq-questionMod.xsd
and modify it as follows: <xs:annotation>
element to add " faq-question" to the domains value string:This change changes all the building blocks for <concept>
and <conbody>
to their FAQ question equivalents. The trailing "." is essential because you do not want to change "concept" or "conbody" where it occurs in @class
attribute values.
@class
attribute, append " faq-question/faq-question " to the end of the default value. <faq-question>
. <xs:element>
for "conbody" to reflect the <faq-answer-details>
, resulting in this element declaration:<faq-question>
:<xs:element>
for "faq-answer-details" and rename it "faq-question-statement". Change "faq-answer-details" to "faq-question-statement" and change the @domains
attribute value to "- topic/title concept/title faq-question/faq-question-statement ":<xs:element>
for "faq-answer-details" and rename it "faq-short-answer". Change "faq-answer-details" to "faq-short-answer" and change the @domains
attribute value to "- topic/shortdesc concept/shortdesc faq-question/faq-short-answer ":commonElementMod.xsd
from the standard DITA schema distribution and find the <xs:complexType>
declaration for "title.class". Copy the complexType, title.content group, and title.attributes group and paste it into the faq-questionMod.xsd. commonElementMod.xsd
find the <xs:complexType>
declaration for "shortdesc.class". Copy the complexType, title.content group, and title.attributes group and paste it into the faq-questionMod.xsd. At this point the new topic type declarations are correct but in order to make them usable you need to replace all the local URL references with the URNs defined in the entity resolution catalog.
If you have already packaged the DTD version of the module as a Toolkit plugin you can simply redeploy it in order to have the updated catalog for the XSD components hooked in. If you haven't packaged it as a Toolkit plugin, you should do so now.
@xsi:noNamespaceSchemaLocation
value to the URN you associated with the faq-question.xsd
file, e.g.:Validate the document. Assuming that you've deployed the new catalog correctly or otherwise hooked up the catalog into your validation system, the document should be valid.
faq-question.xsd
and modify the references to the faq-questionGrp.xsd
and faq-questionMod.xsd
files to use the corresponding URNs from the entity resolution catalog:Goal: Define a new map type that represents an FAQ publication.
Having defined a new topic type for FAQ questions (Topic Specialization Tutorial), we can now define a corresponding map type for creating complete FAQ sets.
New map types are used to either represent specific types of publications (what most people would call a "document type" in the generic sense, not the XML sense) or to represent specific combinations of topic types. For example, a common pattern is to have a task with associated concept and reference topics that together represent a single unit of supporting information for a specific task. It could be useful to define a separate map type that codifies this structure1
For this tutorial, we want to be able to define frequently asked question publications that consist entirely or mostly of FAQ question topics.
While you do this by simply defining a new map type that defined topicref types specifically for organizing FAQ entries, in practice it is usually better to define new topicref types as map domains so that they can be used in any map type. If you still want a specific map type you can define a map type that depends on the new map domain in order to define appropriately constrained content models.
The Learning and Training learningMapDomain and learningMap modules are a good example of this approach. The learningMap domain lets you use learning-specific topicrefs in any map type while the learningMap gives you a ready-to-use map specifically for learning content. The DITA for Publishers vocabulary takes the same approach with the publication map domain and pubmap map types.
To implement the domain and the map type that uses it we could start by defining the map domain and then defining the map type that uses it. However, the principle of test-driven development suggests that we start with the map type and work toward implementing the map domain.
A typical FAQ consists of one or more groups of questions, where each group has a descriptive title. There may be some introductory material that is not itself FAQ questions.
The metadata requirement is handled by the generic metadata for topicrefs and maps (at least for the purpose of this exercise). References to generic topics can be done using unspecialized <topicref>
.
<faq-question>
<faq-question>
topic type to require short descriptions, it is probably appropriate to set the default value for the @type
attribute to "faq-question" so that users are warned if they point to other topic types. Because FAQ questions are explicitly atomic, <faq-question>
does not allow subordinate topicrefs. <faq-question-set>
<faq-map>
<map>
and serves as the root of an FAQ publication. It's content model is:By requiring exactly one <faq-question-set>
the map clearly establishes the root of the overall FAQ navigation structure.
In your work area create the directories faq-map
. Within faq-map
create the directory dtd
.
faq-mapDomain
and faq-mapDomain/dtd
. In the faq-mapDomain/dtd
directory create the empty files faq-mapDomain.ent
and faq-mapDomain.mod
. If you want to have some content in these files you can create appropriate DTD header comments, e.g.:These stub files will allow us to create references to these modules from the faq-map document type shell before we've actually defined the faq-mapDomain module.
faq-map
directory create the file catalog.xml
with this content:In the standard DITA DTD distribution, find the file base/basemap.dtd
and copy it as file "faq-map/dtd/faq-map.dtd
".
faq-map.dtd
and modify it as follows: Remember that we haven't created the FAQ map domain yet, so this reference currently points to a file that doesn't exist.
%topicref;
. You are deleting the declaration for %topicref;
because while we need the mapGroup domain so we can use the <keydef>
element type, we will be allowing it in a specific place in the content model for <faq-map>
, so we don't want it to be allowed wherever <topicref>
is allowed.
%faq-question-set;
here, but because the faq-map map type will depend on the faq-map domain it will be directly defining where <faq-question-set>
is allowed and therefore we don't want to generally allow <faq-question-set>
anywhere <topicref>
is allowed. %map-type;
parameter entity and add this declaration after it:faq-map
directory create a new XML document named fap-map-test-01.ditamap
and give it this content:Validate the document. It should fail with a message to the effect that it cannot find the file "faq-map.mod".
At this point you have what should be a good document type shell and a document that uses it.
The next step is to implement the faq-map type module.
Find the file map.mod
in the standard DITA DTD distribution. You will be cutting and pasting from map.mod
into the new module file for the faq-map map type.
faq-map/dtd/faq-map.mod
and give it this content:map.mod
find the declaration for %map.content;
and copy that declaration and the next three declarations (%map.attributes;
and the ENTITY and ATTLIST declarations for <map>
) and paste them into the faq-map.mod
file after the header comment:%faq-map.content;
parameter entity to:@domains
attribute declaration in the pub-map ATTLIST declaration to reflect the module hierarchy and the required map domains:%keydef;
and %faq-question-group;
were referenced but not declared. Because this map type module depends on specific domains, we have to locally declare the parameter entities for those element types we use from the domains because the domain-provided parameter entities are not included by the shell DTD until after the map type module is included.
Validate the test document again. It should now give a message that the document is missing required content.
Validate the test document again. It should now complain that the element type <faq-question-set>
is not declared, which of course it is not.
@class
attribute declaration for the <faq-map>
element:cAt this point the faq-map map type should be ready to use as soon as the faq-mapDomain module is defined.
The faq-mapDomain map domain defines the <faq-question-set>
and <faq-question>
topicref types.
faq-mapDomain/dtd/faq-mapDomain.ent
and add these declarations:faq-mapDomain/dtd/faq-mapDomain.mod
and add these parameter entity declarations:map.mod
find the declarations for the <topicref>
element and copy them into the faq-mapDomain.mod
file:%topicref.atts;
parameter entity:<faq-question-set>
to:<faq-question-set>
and paste them after the ATTLIST declaration for <faq-question-set>
. Change "faq-question-set" to "faq-question":<faq-question>
to:cmap.mod
find the @class
attribute declaration for @topicref
and paste it into faq-mapDomain.mod
. <faq-question>
topicref within <faq-question-set>
. You're done. The FAQ map type and map domains have been declared and validated. All that remains is adding the appropriate catalog entries and updating the faq-map document type shell to use the public IDs for the module files and packaging the lot as one or more Toolkit plugins.
As for the DTD version of the map specialization, we will create both a map domain and a map type.
<faq-map>
map type, do the following: faq-map/xsd
. faq-mapDomain/xsd
. faq-mapDomain/xsd/faq-mapDomain.xsd
with this content:This file acts as the stub for the FAQ map map domain, which we will define in Step 2.
basemap.xsd
from the standard DITA schema distribution and copy it into the faq-map/xsd
directory and rename it to faq-map.xsd
. faq-map/faq-map-test-xsd-01.ditamap
with this content:Validate the document. It should complain that the element type <faq-map>
is not declared.
faq-map.xsd
. @domains
attribute value:faq-map/xsd/faq-mapMod.xsd
with this content:faq-map.xsd
file. mapMod.xsd
from the standard DITA schema distribution. Find the comment "Import - XML Attributes and Namespaces" and copy it and the two imports following it into faq-mapMod.xsd
:<xs:redefine>
element for mapGrp.xsd and add an include of faq-mapDomain.xsd
immediately before it:mapMod.xsd
find the declarations for the <map>
element type (they should all be together in the file) and copy them into faq-mapMod.xsd
. @class
attribute:@class
attribute to "- map/map faq-map/faq-map ":At this point the FAQ-map map type document type shell and module is complete. Now we just need to define the FAQ-map map domain.
faq-mapDomain/xsd/faq-mapDomain.xsd
. mapGrp.xsd
from the standard DITA schema distribution, find the group for "topicref" and copy it into faq-mapDomain.xsd
after the <xs:import>
element:mapMod.xsd
find the declarations for <topicref>
and copy them to faq-mapDomain.xsd
:@class
attribute and in the reference to the "topicref-atts" attribute group:<faq-question-set>
is invalid starting with <faq-question>
. <faq-question-set>
to:@class
attribute to "+ map/topicref faq-map-d/faq-question-set ":<faq-question-set>
and rename "faq-question-set" to "faq-question", resulting in these declarations:<faq-question>
to remove the reference to <faq-question-set>
:<faq-question>
other than <topicmeta>
. At this point the FAQ map and FAQ-map map domain declarations are complete. All that remains is defining appropriate URNs for the schema locations, modifying the document type shell to use the URNs rather than relative URLs, and package it all up as a Toolkit plugin.